進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1508201317513200
論文名稱(中文) 利用線間功率潮流控制器於混合離岸式風場之功率潮流控制及穩定度分析
論文名稱(英文) Power Flow Control and Stability Analysis of a Hybrid Offshore Wind Farm Using Interline Power Flow Controllers
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 林彥甫
研究生(英文) Yan-Fu Lin
學號 N26001238
學位類別 碩士
語文別 中文
論文頁數 155頁
口試委員 指導教授-王醴
口試委員-洪穎怡
口試委員-王耀諄
口試委員-劉添華
中文關鍵字 離岸式風場  線間功率潮流控制器  功率潮流控制  穩定度 
英文關鍵字 Offshore wind farms  interline power flow controller  power flow control  stability 
學科別分類
中文摘要 本論文係針對以雙饋式感應發電機為基礎之離岸式風場與以永磁式同步發電機為基礎之離岸式風場做整合後,透過線間功率潮流控制器併聯至不同市電端之架構為研究目標,並比較此類混合離岸式風場採用線間功率潮流控制器之影響與穩定度改善之影響。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立以雙饋式感應發電機為基礎之離岸式風場、以永磁式同步發電機為基礎之離岸式風場以及線間功率潮流控制器等模型,並利用極點安置法設計線間功率潮流控制器之比例-積分-微分阻尼控制器。本論文於穩態特性方面,分析風速及電網電壓變動等情況下對系統穩定度特性之影響。在暫態及動態模擬方面,完成了風速變動以及市電端發生三相短路故障等模擬結果。由穩態、動態及暫態之模擬結果分析得知,線間功率潮流控制器能夠有效地控制混合離岸式風場併聯至不同市電端之功率潮流以及加入比例-積分-微分阻尼控制器之後能改善該風場系統於不同干擾下之穩定度。
英文摘要 This thesis presents the analyzed results of power-flow control and stability improvement of an integrated doubly-fed induction generator (DFIG)-based offshore wind farm (OWF) and permanent-magnet synchronous generator (PMG)-based OWF connected to different grid terminals through an interline power flow controller (IPFC). The q-d axis equivalent-circuit model is used to establish the models of the studied DFIG-based OWF, the PMG-based OWF, and the IPFC under three-phase balanced loading conditions. A proportional-integral-derivative (PID) damping controller of the IPFC is designed by using pole-assignment approach based on modal control theory. Steady-state characteristics of the studied system under different values of wind speed and grid voltage are examined. Dynamic results and transient simulations of the studied system subject to a wind-speed disturbance and a three-phase fault at the power grid are also carried out. It can be concluded from the simulation results that the proposed IPFC joined with the designed PID damping controller is effective in controlling the power flow from OWFs to different grid terminals and improving the stability of the studied integrated OWF systems.
論文目次 摘 要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 XII
符號說明 XV
第一章 緒論 1
1-1 研究背景與研究動機 1
1-2 相關文獻回顧 2
1-3 本論文貢獻 6
1-4 研究內容概述 7
第二章 系統與數學模型 9
2-1 前言 9
2-2 風速之數學模型 11
2-3 聚集等效風渦輪機之模型 13
2-4 風渦輪機和發電機間轉矩之模型 14
2-5雙饋式感應發電機之數學模型 16
2-6永磁式同步發電機之數學模型 23
2-7 旋角控制器之模型 30
2-8 線間功率潮流控制器與其控制系統之數學模型 31
第三章 利用極點安置法設計控制器 36
3-1 前言 36
3-2 線間功率潮流控制器的控制系統模型 36
3-3 以極點安置法設計PID阻尼控制器 38
3-4 靈敏度分析 43
第四章 混合離岸式風場經由線間功率潮流控制器併聯至不同電
網之穩態分析 48
4-1 前言 48
4-2 風速改變時之穩態分析 49
4-2-1 PMG風場風速改變時系統之穩態工作點分析 49
4-2-2 PMG風場風速改變時系統之特徵值分析 56
4-2-3 DFIG風場風速改變時系統之穩態工作點分析 62
4-2-4 DFIG風場風速改變時系統之特徵值分析 68
4-3 市電端電壓改變時之穩態分析 74
4-3-1 市電端1電壓改變時系統之穩態工作點分析 74
4-3-2 市電端1電壓改變時系統之特徵值分析 81
4-3-3 市電端2電壓改變時系統之穩態工作點分析 87
4-3-4 市電端2電壓改變時系統之特徵值分析 94
4-4 傳輸線長度改變時之穩態分析 99
4-4-1 傳輸線1長度改變時系統之穩態工作點分析 99
4-4-2 傳輸線1長度改變時系統之特徵值分析 105
4-4-3 傳輸線2長度改變時系統之穩態工作點分析 112
4-4-4 傳輸線2長度改變時系統之特徵值分析 118
第五章 混合離岸式風場經由線間功率潮流控制器併聯至不同電
網之動態與暫態分析 124
5-1 前言 124
5-2 PMG風場發生風速變動時之動態分析 124
5-3 DFIG風場發生風速變動時之動態分析 131
5-4 市電端1發生三相短路故障時之暫態分析 137
5-5 市電端2發生三相短路故障時之暫態分析 143
第六章 結論與未來研究方向 149
6-1 結論 149
6-2 未來研究方向 150
參考文獻 151
系統參數 154
作者簡介 155
參考文獻 [1] 經濟部能源局。http://www.moeaboe.gov.tw/, retrieve date: Jun. 13, 2013.
[2] R. E. Torres-Olguin, M. Molinas, and Undeland, “Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission,” IEEE Trans. Sustainable Energy, vol. 3, no. 4, pp. 899-907, Oct. 2012.
[3] J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech conference, Bologna, Italy, Jun. 23-26, 2003.
[4] P. Ledesma and J. Usaola, “Doubly fed induction generator model for transient stability analysis,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 388-397, Jun. 2005.
[5] M. Kayikci and J. V. Milanovic, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, Jun. 2007.
[6] R. G. de Almeida and J. A. P. Lopes, “Participation of doubly fed induction wind generators in system frequency regulation,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 944-950, Aug. 2007.
[7] R. Bharanikumar, V. Kandasamy, M. P. Maheswari, and A. N. Kumar, “Steady state analysis of wind turbine driven PM generator with power converters,” in Proc. 2008 International Emerging Trends in Engineering and Technology Conference, Nagpur, Maharashtra, Jul. 18-19, 2008, pp. 922-926.
[8] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A variable speed wind turbine control strategy to meet wind farm grid code requirements,” IEEE Trans. Power Systems, vol. 25, no. 1, pp. 331-340, Feb. 2010.
[9] L. Wang and G. Z. Zheng, “Analysis of a microturbine generator system connected to a distribution system through power-electronics converters,” IEEE Trans. Sustainable Energy, vol. 2, no. 2, pp. 159-166, Apr. 2011.
[10] M. Singh, V. Khadkikar, and A. Chandra, “Grid synchronization with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system,” IET Power Electronics, vol. 4, no. 1, pp. 122-130, Nov. 2011.
[11] I. Papic, P. Zunko, D. Povh, and M. Weinhold, “Basic control of unified power flow controller,” IEEE Trans. Power Systems, vol. 12, no. 4, pp. 1734-1739, Nov. 1997.
[12] L. Gyugyi, K. K. Sen, and C. D. Schauder, “Interline power flow controller concept: A new approach to power flow management in transmission systems,” IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1115-1123, Jul. 1998.
[13] B. Fardanesh, “Optimal utilization, sizing, and steady-state performance comparison of multiconverter VSC-based FACTS controllers,” IEEE Trans. Power Delivery, vol. 19, no. 3, pp. 1321-1327, Jul. 2004.
[14] R. L. Vasquez-Arnez and L. C. Zanetta, “A novel approach for modeling the steady-state VSC-based multiline FACTS controllers and their operational constraints,” IEEE Trans. Power Delivery, vol. 23, no. 1, pp. 457-464, Jan. 2008.
[15] X. Jiang, J. H. Cow, A. Edris, B. Fardanesh, and E. Uzunovic, “Transfer path stability enhancement by voltage-sourced converter-based FACTS controllers,” IEEE Trans. Power Delivery, vol. 19, no. 3, pp. 1019-1025, Apr. 2010.
[16] S. Jiang, A. M. Gole, U. D. Annakkage, and D. A. Jacobson, ” Damping performance analysis of IPFC and UPFC controllers using validated small-signal models,” IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 446-454, Jan. 2011.
[17] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, Dec. 1983, pp.3791-3795.
[18] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 2001.
[19] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,2006年6月。
[20] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
[21] S. M. Muyeen, J. Tamura, and T. Murata, Stability Augmentation of a Grid-connected Wind Farm, New York: Springer, 2009.
[22] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
[23] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
[24] 李浩文,利用超導儲能系統以及整合型功率潮流控制器於整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,2011年7月。
[25] 黃怡瑄,混合離岸式風場連接高壓直流傳輸系統之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,2011年7月。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw