進階搜尋


下載電子全文  
系統識別號 U0026-1508201311341300
論文名稱(中文) 研究具有p型氮化鎵披覆層之增強式高電子遷移率場效電晶體
論文名稱(英文) Enhancement Mode High Electron Mobility Transistors with p-GaN Cap Layer
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 陳翊文
研究生(英文) Yi-Wen Chen
學號 L76001309
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-王永和
口試委員-洪茂峰
口試委員-吳昌崙
口試委員-施博文
口試委員-李冠慰
中文關鍵字 披覆層  p型氮化鎵  特徵接觸電阻  感應耦合電漿 
英文關鍵字 cap layer  p-GaN  specific contact resistance  Inductively Couple Plasma 
學科別分類
中文摘要 在本論文中,以20nm的p型氮化鎵當作披覆層成功的達到增強式電晶體;主要是利用p型氮化鎵極化特性調變能帶降低元件二維電子氣濃度。本實驗利用感應耦合電漿蝕刻移除歐姆區域的p型氮化鎵,並使用傳輸線模型計算出元件的特徵接觸電阻從14.29 Ω.mm減少到3.5Ω.mm。移除歐姆區域p型氮化鎵元件其最大飽和電流從136 mA/mm提升至200 mA/mm,最大轉換電導從53 mS/mm提升至 112 mS/mm;另外,崩潰電壓具有明顯的改善主要原因是移除p型氮化鎵後降低漏電流路徑。最後比較Ni/Au、Pt、W閘極之間的電性關係,並利用鉑金屬當作閘極,其飽和電流為200mA/mm、轉換電導為112mS/mm、臨界電壓為0.05V、次臨界擺幅為106 mV/dec。
英文摘要 In this thesis, the normally-off GaN/AlGaN high electron mobility transistor (HEMT) on Si substrates by using the p-GaN cap layer is presented. The role of p-GaN to modulate the barrier height is discussed. The key idea is to make of use the polarization-induced field in the p-GaN cap layer, by which the conduction band is raised, which leads to the normally off operation. Utilizing the source/drain ohmic metal as an etching mask, p-GaN cap layer was removed by inductively coupled plasma etcher. The parasitic drain/source resistance and the specific contact resistance can be effectively reduced. The specific contact resistance is reduced from 14.29 Ω.mm to 3.5 Ω.mm measured by TLM measurement. By etching off the p-GaN cap layer at the ohmic region the maximum drain current has increased from 136 to 200 mA/mm and the maximum transconductance has raised from 53 to 112 mS/mm. The breakdown voltage with etching off the p-GaN cap layer at the ohmic region has increased dramatically because of decreasing the path of leakage current. Finally, the results of Ni/Au, Pt, W as gate electrode metal were investigated. The fabricated transistor using platinum metal gate with ID=200 mA/mm, Gm=112 mS/mm, Vth= 0.05V and subthreshold swing =106 mV/dec can be achieved.
論文目次 中文摘要 I
ABSTRACT II
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1. 氮化鎵材料特性與發展 1
1.1.1. 氮化鎵元件應用 1
1.1.2. 氮化鎵優越的材料特性 1
1.2. P型氮化鎵材料發展 3
1.3. 動機 4
第二章 ALGAN/GAN HEMTS材料分析與理論基礎 8
2.1. 極化效應簡介 8
2.1.1. 晶體結構 8
2.1.2. 應力 11
2.1.3. 極化效應 11
2.2. 金屬與半導體接觸 14
2.3. 傳輸線模型(TRANSMISSION-LINE MODEL)量測法 20
2.4. 感應耦合電漿蝕刻(INDUCTIVELY COUPLED PLASMA ETCHER)介紹 24
2.4.1. 電漿形成 25
2.4.2. 感應耦合電漿蝕刻機台簡介 25
第三章 元件製程步驟 27
3.1. 平臺隔離製程 (MESA ISOLATION) 28
3.1.1. 試片清洗(Wafer clean) 28
3.1.2. 微影製程(Lithography) 29
3.1.3. 平臺隔離蝕刻(Mesa isolation etch) 29
3.2. 歐姆接觸(OHMIC CONTACT) 30
3.2.1. 微影製程 30
3.2.2. 表面處理(Surface treatment) 31
3.2.3. 金屬蒸鍍 31
3.2.4. 舉離(Lift-off) 31
3.2.5. 熱退火(Thermal annealing) 32
3.3. 閘極製作 33
3.3.1. 微影製程 33
3.3.2. 濺鍍金屬 34
3.3.3. 元件比較 34
第四章 量測結果與討論 40
4.1. 感應耦合電漿蝕刻(INDUCTIVELY COUPLED PLASMA ETCHER) 40
4.1.1. 蝕刻功率的影響 40
4.1.2. 反應氣體流量的影響 41
4.1.3. 腔體壓力對平坦度的影響 42
4.2. 蝕刻歐姆區P-GAN前後電性討論 46
4.2.1. 飽和電流(The saturated drain current) 46
4.2.2. 轉換電導(The transconductance)、臨界電壓(The threshold voltage) 47
4.2.3. 閘極漏電流及崩潰電壓(The gate leakage current and breakdown voltage) 48
4.3. 閘極金屬討論 59
4.3.1. 傳統HEMT與閘極金屬之電性探討 59
4.3.2. p-GaN HEMT與閘極金屬之電性探討 60
4.3.3. p-GaN HEMT與傳統HEMT之電性探討 61
第五章 結論與未來工作 73
第六章 文獻回顧 75
參考文獻 [1] L. F. Eastman and U. K.Mishra, “The toughest transistor yet,” IEEE spectrum, vol.39, pp. 28-33, May 2002.
[2] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, no. 5379, pp. 956-961, August 1998.
[3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, January 1994.
[4] S. Nakamura, S. Pearton, and G. Fasol, The blue laser diodes, Springer-Verlag, Heidelberg, chap2, 1997.
[5] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phy., vol. 34, pp. 1332-1335, September 1995.
[6] T. Mukai, D. Morita, and S. Nakamura, “High power UV InGaN/AlGaN double heterostructure LEDs,” J. Cryst. Growth, vol. 189-190, pp. 778-781, June 1998.
[7] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN based light emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phy., vol. 37, pp. 479-481, April 1998.
[8] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous wave operation of InGaN/GaN/AlGaN based laser diodes grown on GaN substrates,” Appl. Phys. Lett, Vol. 72, Issue 16, pp. 2014-2016, April 1998.
[9] Strategies Unlimited, Gallium nitride technology status and applications analysis, p. 3, 1997.
[10] Strategies Unlimited, Gallium nitride technology status and applications analysis, p. 21,1997.
[11] W.C. Johnson, J.B Parsons, and M.C. Crew , “Nitrogen compounds of gallium III,” The Journal of Physical Chemistry, vol.36, pp.2561-2654, 1932.
[12] J. I. Pankove, T. D. Moustakas, “Gallium nitride (GaN)/semiconductorsand semimetals,” Academic Press, Vol. 50, pp. 1-6, 1988.
[13] S. Yoshida, S. Misawa, and S. Gonda, “Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy,” J. Appl. Phys, vol. 53, pp. 6844-6846, October 1982.
[14] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Saeaki, “Effects of AlN buffer layer on crystallographic structure and on electrical and optic properties of GaN and Ga1-xAlxN(0<x<0.4)films grown on sapphire substrate by MOVPE,” J. Cryst. Growth, vol. 98, Issue 1-2, pp. 209-219, November 1989.
[15] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol 48, pp. 353-355, January 1986.
[16] S. Nakamura, “GaN growth using GaN buffer layer”,Jpn. J. Appl. Phys., vol.30, pp. 1705-1707, August 1911.
[17] W. Liu, Fundamentals of III-V device-HBTs, MESFETs, and HFETs/HEMTs , John Wiley&Sons Inc, March 1999.
[18] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5815–5875, June 2001.
[19] M. W. Lee, H. Z. Twu, C. C. Chen, and C. H. Chen, “Optical characterization of wurtzite gallium nitride nanowires,” Appl. Phys. Lett., vol. 79, pp.1483–1485, November 2001.
[20] T. Matsuoka, H. Okamoto, M. Nakao, H Harima, and E. Kurimoto,“Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., vol. 81, pp. 1246–1248, August 2002.
[21] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., vol. 94, pp. 3675–3696, September 2003.
[22] S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, “Steady-state and transient electron transport within bulk wurtzite indium nitride: An updated semiclassical three-valley Monte Carlo simulation analysis,” Appl. Phys. Lett., vol. 87, pp. 222103-1–222103-3, November 2005.
[23] K. Charles, M. Paul, Introduction to Solid State Physics, John Wiley & Sons Inc, November 2004.
[24] T. Takayama, M. Yuri, K. Itoh, and J. S. Harris, Jr., “Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model,” J. Appl. Phys., vol. 90, pp. 2358–2369, September 2001.
[25] S. C. Shi, C. F. Chen, S. Chattopadhyay, K. H. Chen, B. W. Ke, L. C. Chen, L. Trinkler, and B. Berzina, “Luminescence properties of wurtzite AlN nanotips,” Appl. Phys. Lett., vol. 89, pp.163127-1–163127-3, October 2006.
[26] P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed., New Jersey: Prentice Hall, p. 23, 1997.
[27] O. Ambacher, R. Dimitrov, M. Stutzmann, B.E. Foutz, M.J. Murphy, J.A. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Chumbes, B. Green, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, “Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices,” Phys. Status Solidi, vol 216, pp. 381-389, November 1999.
[28] D. K. Schroder, Semiconductor material and device characterization, John Wiley&Sons Inc, Jane 2006.
[29] T. C. Shen, G. B. Gao, and H. Morkoc, “Recent developments in ohmic contacts to III-V compound semiconductors,” J. Vac. Sci. Tech., B10, pp.2113, September 1992.
[30] T. Fujiwara, S. Rajan, S. Keller, M. Higashiwaki, J. S. Speck, S. P. Denbaars, and U. K.Mishra, “Eancement-mode m-plane AlGaN/GaN heterojunction field-effect ransistors,” Appl. Phys. Express, pp.011001-011002, January 2009.
[31] R. Williams, Modern GaAs Processing Methods, Artech House, Boston London, 1990.
[32] M. Kuroda, T. Ueda, and T. Tanaka, “Nonpolar AlGaN/GaN metal-insulator-semiconductor heterojunction field-effect transistors with a normally off operation,” IEEE Electron Device Lett., vol. 57, no. 2, pp. 368-372, February 2010.
[33] M. Quirk, J. Serda, Semiconductor Manufacturing Technology, Upper Saddle River, NJ[u.a.] Prentice Hall PTR, 2001.
[34] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 1994.
[35] H. Sun, A. R. Alt, S. Tirelli, D. Marti, H. Benedickter, E. Piner, and C. R. Bolognesi, “Nanometric AlGaN/GaN HEMT performance with implant or mesa isolation,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1056–1058, Augst 2011.
[36] S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, “GaN:processing, defects, and device,” Appl. Phys. Rev., vol. 86, issue 1, pp. 1-78, July 1999.
[37] H.F. Honga,C.K. Chao, J.I. Chyi, Y.C. Tzeng, “Reactive ion etching of GaN/InGaN using BCl3 plasma,” Materials Chemistry and Physics, vol. 77, issue 2, pp. 411-415, January 2002.
[38] T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs with thin InGaN cap layer for normally-off operation,” IEEE Electron Device Lett., vol. 28, no. 7, pp. 549-551, July 2007.
[39] C. T. Chang, T. H. Hsu, E.Y. Chang, Y. C. Chen, H. D. Trinh and K. J. Chen “Normally-off operation AlGaN/GaN MOS-HEMT with high threshold voltage,” IEEE Electronics Lett., vol. 46, issue 18, pp. 1280-1281, September 2010.
[40] O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat Treidel and J. Würfl, “Normally-off high voltage p-GaN gate GaN HFET with carbon doped buffer,” The 23th International Symposium on Power Semiconductor Device(ISPSD), San Diego, CA, pp. 239-242, May 2011.
[41] C. S. Suha, A. Chinia, Y. FUa, C. Poblenzb, J. S. Speckb, U. K. Mishraa, “p-GaN/AlGaN/GaN enhancement-mode HEMTs,” Device Research Conference, State College, PA, USA, pp. 163-164, June 2006.
[42] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C.Hu, M. J. Tsai, and Y. H. Wang, “AlGaN/GaN MOSHEMTs with liquid-phase-deposited TiO2 as gate dielectric,” IEEE Transactions Electron Device Lett. vol. 56, no. 12, pp. 2911-2916, December 2009.
[43] C. C. Hu, M S. Lin, T. Y. Wu, F. Adriyanto, P. W. Sze, C. L. Wu, and Y. H. Wang, “ AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor with liquid-phase-deposited barium-doped TiO2 as a gate dielectric,” IEEE Transactions Electron Device Lett. vol. 59, no. 1, pp. 121-127, January 2012.
[44] S. Basu, P. K. Singh, S. K. Lin, P. W. Sze, and Y. H. Wang, “ Effects of short-term DC-bias-induced stress on n-GaN/AlGaN/GaN MOSHEMTs with liquid-phase-deposited Al2O3 as a gate dielectric,” IEEE Transactions Electron Device Lett. vol. 57, no. 11, pp. 2978-2987, November 2010.
[45] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 189–191, March 2010.
[46] B. Lu, E. Matioli, and T. Palacios, “Tri-gate normally-off GaN power MISFET,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 360–362, March 2012.
[47] B. Lu, O. I. Saadat, and T. Palacios, “High-performance integrated dual gate AlGaN/GaN enhancement-mode transistor,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 990–992, September 2010.
[48] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207–2215, September 2006.
[49] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 435–437, July 2005.
[50] N. Ikeda, J. Li, and S. Yoshida, “Normally-off operation power AlGaN/GaN HFET,” in Proc. Int. Symp. Power Semicond. Devices & ICs , pp. 369–372, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw