進階搜尋


下載電子全文  
系統識別號 U0026-1508201221415400
論文名稱(中文) ITO薄膜鍍製於可撓性基板的彎曲疲勞壽命分析
論文名稱(英文) Analysis Bending Fatigue Life of the ITO film on the Flexible Substrate
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 陳冠廷
研究生(英文) Kuan-Ting Chen
學號 n16971075
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-林仁輝
口試委員-邱源成
口試委員-李榮宗
口試委員-李澤昌
中文關鍵字 彎曲試驗  疲勞破壞  SN曲線  應變能 
英文關鍵字 Bending test  Fatigue failure  SN curve  Strain energy 
學科別分類
中文摘要 本論文針對ITO薄膜經過彎曲試驗的影響來探討,循環彎曲對薄膜壽命的影響。ITO薄膜有良好的片電阻及光學特性,但是當薄膜鍍製在可撓性基板上的同時,也容易因受外力的彎曲或拉伸使表面產生裂紋而造成薄膜產生破壞,可稱之為疲勞限界(Fatigue limit)。因此研究薄膜受彎曲試驗影響產生的疲勞壽命是相當重要的。研究當中也考量到加入四種基板預應變的條件(0%、2%、4%、6%),分析在不同基板預應變下對疲勞壽命的影響。
疲勞試驗有兩種主要試驗,因為第一種微壓試驗為給定力而使薄膜以循環壓縮方式彎曲作動,最後得到薄膜疲勞性質的SN曲線與電阻變化,但是微壓縮試驗機循環數僅能達100cycles,且薄膜試片較小易產生邊際效應,所以需要再配上彎曲試驗。在彎曲試驗中以給定加速度使薄膜以循環壓縮方式彎曲作動,cycles數的上限較微壓縮試驗機來的多,且薄膜面積較大受邊際效應影響小,但是本試驗機無法取得薄膜疲勞性質的SN曲線所以兩種試驗需要互相搭配才得以進行。
在研究中主要結果分成三個部分,一是微壓縮試驗使薄膜施以循環負載造成薄膜疲勞破壞的影響,而薄膜受外力影響而造成應力集中現象然後求得薄膜SN曲線。
第二是彎曲試驗以不同的作動加速度對薄膜做疲勞試驗,並探討彎曲試驗對薄膜電阻的影響,是否因加速度增加而使電阻與薄膜疲勞破壞機率上升。
第三為分析薄膜破壞所累積的能量與壽命關係,搭配第一個部分試驗所得到的疲勞性質加上兩種試驗的施工條件,以FEM模擬薄膜達疲勞破壞所累積的應變能(Strain energy)的值,並用微壓縮試驗薄膜達疲勞破壞累積的應變能去對應彎曲試驗薄膜所累積的能量,便可知道彎曲試驗須累積多少cycles數才會與微壓縮試驗薄膜破壞累積的能量相同,最後探討彎曲試驗以不同加速度的條件下應變能累積與壽命關係,並與薄膜電阻上升10%時之cycles數與韋伯分佈(Weibull distribution)薄膜破壞為63%時的cycles數。另外以FEM模擬彎曲試驗應變能隨著cycles的增加應變能有趨近平緩的趨勢,以此方法與上述兩種疲勞壽命的預測值相當接近,所以此法提供了一精確有效預測薄膜疲勞壽命的辦法。
英文摘要 The topical subject of this paper is to investigate the bending fatigue of sputtered ITO on flexible substrate. ITO has excellent sheet resistance and outstanding optical properties; however, ITO can crack at very low tensile strains, known as the thin film’s fatigue limit. Therefore, the cycle bending fatigue of ITO thin film on flexible substrates is of a significant importance. This study also considered the prestrain conditions of the four types of templates (0%、2%、4%、6%) and analyzed their influence on cycle bending fatigue.
Bending fatigue test includes two major tests. The first Micro Compression test used assigned force enabling the thin film to exercise in the way of cyclic compression. Afterwards, the SN curve and electrical resistance of the thin film fatigue property were acquired. However, the micro compression machine can only reach the limit of 100 cycles and the smaller sputtered ITO film increases the possibility of edge effect. Therefore, the second Bending test has to be executed. The Bending test used assigned acceleration to bend the thin film in the way of cyclic compression. In such condition, the limit of cycle numbers exceeds the limit of micro compression machine. Moreover, the thin film with bigger area would be less affected by edge effect. However, the testing machine used in this study could not acquire the SN curve of thin film fatigue property. As a result, the two types of experiments must be performed together to acquire the complete statistics.
The study consists of three major results. In the first part of the experiment, the thin film can fatigue fracture through cyclic bending by the micro compression test. Afterwards, the SN curve of ITO fatigue properties was calculated.
In the second part of experiment, the effect of bending’s acceleration and sample width on the change in electrical resistance was investigated. The experiment tested whether the electrical resistance and the destruction rate of thin film rises with the acceleration.
The third part of the experiment analyzed the relationship between accumulated energy in thin film fatigue failure and cycle bending fatigue. The experiment simulated the strain energy with micro compression test result and bending test result by FEM. By studying the correlation between “the accumulated strain energy of reaching Fatigue failure in Micro compression test” and “the accumulated energy in Bending test,” the paper finds out the number of cycles accumulated in Bending test that equals to the energy accumulated in the Fatigue failure of Micro compression test. Finally, the study explored the relationship between the strain energy accumulation and film cycle in Bending test under various acceleration conditions. Correlating “the number of cycles when the thin film electrical resistance increase by 10%” with the analysis result showing “63% Fatigue failure of Weibull distribution,” the study compared the differences between thin film cycle analysis methods.
論文目次 摘要 I
ABSTRACT III
致謝 VI
目錄 VIII
表目錄 XI
圖目錄 XII
第 一 章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 6
1-4 本文架構 8
第 二 章 基本理論 9
2-1 疲勞理論 9
2-1-1 S-N曲線 10
2-2 有限元素分析 12
2-2-1 彈性應力與應變關係 12
2-2-2 畸變能理論(Distortion-energy theory)[37] 14
2-3 韋伯分佈理論(Weibull distribution theory) 17
第 三 章 實驗規劃 19
3-1 實驗目的 19
3-2 實驗設備 22
3-2-1 磁控濺鍍機與夾治具機台介紹 22
3-2-1 微壓縮試驗機 25
3-2-2 彎曲試驗機 28
3-2-3 摩擦力試驗機 30
3-2-4 數位電表M3500A 32
3-2-5 加速規及Labview程式 34
3-2-6 雙束型聚焦離子束SEM(DB-FIB) 37
第 四 章 結果與討論 40
4-1 微壓縮試驗結果 40
4-1-1 微壓縮試驗之薄膜電阻結果 40
4-1-2 微壓縮試驗之SN 曲線結果 44
4-2 模擬(FEM)微壓縮與彎曲試驗薄膜中間應力 45
4-3 彎曲試驗結果 52
4-3-1 彎曲試驗滑塊摩擦力對加速度之影響 53
4-3-2 控制加速規擷取彎曲試驗加速度訊號 55
4-3-3 彎曲試驗對薄膜電阻增長影響 57
4-3-4 薄膜電阻上升10%時之cycles數 67
4-4 韋伯分佈結果 69
4-4-1 薄膜破壞機率之分析結果 69
4-5 模擬(FEM)薄膜達疲勞破壞所累積之應變能 73
4-6 DB-FIB薄膜頂部裂紋與剖面切割結果 85
第 五 章 結論與建議 92
5-1 結論 92
5-2 未來展望 93
參考文獻 95
附錄一 論文相關著作 99
參考文獻 [1] S Kadlec, and J Musil, “Low pressure magnetron sputtering and selfsputtering discharges,” Vacuum, 47, pp. 307-311, 1996.
[2] J. Musil, A. Rajsky, A. J. Bell, J. Matous, M. Cepera, and J. Zeman, “High‐rate magnetron sputtering,” Journal of Vacuum Science & Technology, A 14, pp. 2187-2191, 1996.
[3] C. H. Heo, S. B. Lee, and J. H. Boo, “Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics,” Thin Solid Films, 475, pp. 183-188, 2005.
[4] H. Gleskova, S. Wagner, and Z. Suo, “a-Si:H TFTs Made on Polyimide Foil by PE-CVD at 150°C,” Materials Research Society Symposia Proceedings, 508, pp. 73-78, 1998.
[5] Z. Suo, E. Y. Ma, H. Gleskova, and S. Wagner, “Mechanics of rollable and foldable film-on-foil electronics,” Applied Physics Letters, 74, pp. 1177-1179, 1999.
[6] A. A. Abdallah, D. Kozodaev, P. C. P. Bouten, J. M. J. den Toonder, U. S. Schubert, and G. de With, “Buckle morphology of compressed inorganic thin layers on a polymer substrate,” Thin Solid Films, 503, pp. 167-176, 2006.
[7] T. Miyamae, and H. Nozoye, “Surface characterization and photochemical behavior of poly(ethylene terephthalate) and TiO2/poly(ethylene terephthalate) interface by using sum-frequency generation,” Journal of Photochemistry and Photobiology A: Chemistry, 145, pp. 93-99, 2001.
[8] van den Bosch, M. J., Schreurs, P. J. G., Geers, M. G. D., Maris, and M. P. F. H. L. van Maris, “Interfacial characterization of pre-strained polymer coated steel by a numerical–experimental approach,” Mechanics of Materials, 40, pp. 302-317, 2008.
[9] S. Madasu, and R. A. Cairncross, “Effect of substrate flexibility on dynamic wetting: a finite element model,” Computer Methods in Applied Mechanics and Engineering, 192, pp. 2671-2702, 2003.
[10] E. Vassallo, A. Cremona, F. Ghezzi, and D. Ricci, “Characterization by optical emission spectroscopy of an oxygen plasma used for improving PET wettability,” Vacuum, 84, pp. 902-906, 2010.
[11] N. Y. Cui, D. J. Upadhyay, C. A. Anderson, B. J. Meenan, and N. M. D. Brown, “Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement,” Applied Surface Science, 253, pp. 3865-3871, 2007.
[12] T. V. Savina, P. W. Voorhees, and S. H. Davis, “The effect of surface stress and wetting layers on morphological instability in epitaxially strained films,” Journal of Applied Physics, 96, pp. 3127-3133, 2004.
[13] Z. Suo, and Z. Zhang, “Epitaxial films stabilized by long-range forces,” Physical Review, B 58, pp. 5116-5120, 1998.
[14] S. P. A. Gill, and T. Wang, “On the existence of a critical perturbation amplitude for the Stranski-Krastanov transition,” Surface Science, 602, pp. 3560-3568, 2008.
[15] L. H. He, and X. D. Liang, “Morphological stability of epitaxy films on pre-strained substrates,” EPL (Europhysics Letters), 90, pp. 26006-26011, 2010.
[16] Y. Leterrier, A. Pinyol, L. Rougier, J. H. Waller, J. A. Månson, P. J. J. Dumont, J. Andersons, J. Modniks, M. Campo, P. Sauer, and J. Schwenzel, “Influences of roll-to-roll process and polymer substrate anisotropies on the tensile failure of thin oxide films,” Thin Solid Films, 518, pp. 6984-6992, 2010.
[17] Y. Leterrier, “Durability of nanosized oxygen-barrier coatings on polymers,” Progress in Materials Science, 48, pp. 1–55, 2003.
[18] Y. Leterrier, L. Médico, F. Demarco, J. -A. E. Månson, U. Betz, M. F. Escolà, M. Kharrazi Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films, 460, pp.156–166, 2004.
[19] Y. Leterrier, D. Pellaton, D. Mendels, R. Glauser, J. Andersons, and J.-A. E. Månson, “Biaxial fragmentation of thin silicon oxide coatings on poly(ethylene)terephthalate,” Journal of Materials Science, 36, pp. 2213–2225, 2001
[20] P. C. P. Bouten, “Failure test for brittle conductive layers on flexible display substrates,” Proc. Eurodisplay, pp. 313–316, 2002.
[21] S. J. Gorkhali, D. R. Cairns, and G. P. Crawford,”Reliability of transparent conducting substrates for rollable displays: a cyclic loading investigation,” Journal of the Society for Information Display, 12, pp. 45–49, 2004.
[22] K. L. Johnson, “Contact Mechanics,” Cambridge University Press, New York, 1985.
[23] J. I. Han, “Stability of externally deformed ITO films,” Flexible Flat Panel Displays, 7th ed., Gregory P. Crawford, pp. 121–134, 2005.
[24]劉松柏譯,”材料強度破壞學”成璟文化事業股份有限公司,2000
[25] Jeong-Seob Oh, Young-Rae Cho, Ko-Eun Cheon,” Failure Mechanism of Patterned ITO Electrodes on Flexible Substrate under Static and Dynamic Mechanical Stresses”,Solid State Phenomena, Vol.124-126,p.411-414 (2007).
[26] Khalid Alzoubi, Mohammad M. Hamasha, Susan Lu, and Bahgat Sammakia,” Bending Fatigue Study of Sputtered ITO on Flexible Substrate”, Proc. IEEE,vol. 7,no. 11, p.593-600, (2011).
[27]Picotest Corp,”61/2Digit Digital Multimeter”, Declaration of conformity,2005.
[28] 梁美蘭,“Dual-Beam Focused Ion Beam; DB-FIB SOP”,成功大學 微奈米科技中心,2008.
[30] Khalid Alzoubi, Susan Lu, Bahgat Sammakia, and Mark Poliks,” Factor Effect Study for the High Cyclic Bending Fatigue of Thin Films on PET Substrate for Flexible Displays Applications” Proc. IEEE,vol. 7,no. 6, p.348-355 (2011).

[31] Khalid Alzoubi, Susan Lu, Bahgat Sammakia,” Experimental and Analytical Studies on the High Cycle Fatigue of Thin Film Metal on PET Substrate for Flexible Electronics Applications” Proc. IEEE,vol. 1,no. 1, p.348-355 (2011).

[32] Tse Chang Li,” Effects of Pre-strain Applied to a Poly(Ethylene Terephalate) Substrate before TiO2 Film Deposition on the Contact Angle of the Substrate and the Morphology of the Specimen” Mechanics of Materials, vol.12,p.12-77(2012)

[33] M. Aguilar,” Thickness-stress relations in aluminum thin film”,Materials and manufacturing processes,no.17,p.57-65 (2002)

[34] Do-Il Kim, Byeong-Ung Hwang, Nguyen Thanh Tien, Il-Jin Kim,” Effects of Piezoresistivity of Pentacene Channel in Organic Thin Film Transistors under Mechanical Bending”, Electronic Materials Letters, Vol. 8, No. 1, p.11-16 (2012).

[35] Jeehwan Kim, Augustin J. Hong, Bhupesh Chandra,George S. Tulevski,” Engineering of Contact Resistance between Transparent Single-Walled Carbon Nanotube Films and a-Si:H Single Junction Solar Cells by Gold Nanodots”,Advanced Materials,vol. 24,issue14,p.1899-1902 (2012).

[36] Kenta Tsubouchi, Isao Ohkubo, Hiroshi Kumigashira,” High-Throughput Characterization of Metal Electrode Performance for Electric-Field-Induced Resistance Switching in Metal/Pr0.7Ca0.3MnO3 /Metal Structures”, Advanced Materials,vol. 19,issue. 13,p.1711-1713 (2007).

[37] James M. Gere,Barry J. Goodno,Mechanics of Materials(7st ed.),USA:CENGAGE Learning
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw