進階搜尋


下載電子全文  
系統識別號 U0026-1507202020034100
論文名稱(中文) 晶圓成品倉庫儲位管理最佳化之研究
論文名稱(英文) A Study on Stock Location Management for Warehouse Layout
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 108
學期 2
出版年 109
研究生(中文) 廖士興
研究生(英文) Shih-Hsing Liao
學號 R37071142
學位類別 碩士
語文別 中文
論文頁數 47頁
口試委員 指導教授-黃宇翔
口試委員-張秀雲
口試委員-翁慈宗
中文關鍵字 儲位指派  揀貨路徑  出貨頻率  存貨數量  曼哈頓距離 
英文關鍵字 allocation  linear program  Manhattan Distance  picking route 
學科別分類
中文摘要 倉庫身為物流供應鏈其中的一環,在貨物從製造廠到消費者間扮演著舉足輕重的地位,過去學者們曾提出多種儲存策略以及揀貨路徑規劃,如COI、訂購頻率、訂購數量,但因為商品特性關係,沒有最好的儲存策略,唯有因應產品特性選擇最適合的策略。本研究要探討的是倉庫儲存問題,其商品晶圓為現今市場關鍵產品,從IOT、IOV、Fintech 3.0、5G 網路等等,都需要高端晶圓,因此晶圓的交期對終端商品的影響甚鉅。12 吋的晶圓為市場的主流,其成品價格昂貴又有交期限制,在進出貨的效率顯得格外重要。過去晶圓成品庫倚賴人為經驗判斷規劃儲位,僅以客戶代碼分類擺放,未能有效降低揀貨距離,本文擬定兩項決策變數,出貨頻率及存貨數量為影響揀貨距離的關鍵因子,並以曼哈頓距離將實際料架與出入口距離予以量化,透過本研究發展的數學模型進行最佳化規劃。實驗結果顯示,由出貨頻率及存貨數量分組進行最佳化儲位設計,皆能有效減短行走距離,從入庫至出貨區間改善的幅度在50%左右。期經由本研究的數學模型,提供產業未來在儲位規劃之參考,改善倉庫管理問題。
英文摘要 This study investigates how to seek an optimal allocation for a wafer warehouse in Taiwan.The wafer is a fairly critical technological products nowadays. Due to the fact that every 3C product needs the wafer, such as mobile phones, tablets, smart watches, and even the car keys, nearly all of the products have to work functionally with it. The management of the warehouse includes storage, picking and shipping. Considering the constant and rapid changes of technology products, shipping is therefore regarded as the priority in the management of the warehouse. The current practice is inefficient since the staff sort wafers by the names of customers, which directly creates the extra movement and wastes much time.Picking is a crucial path of shipping. In order to improve the efficiency of picking, a new allocation to shorten the route of picking is a necessary issue. Here we formulate an integer linear program which involves the stock unit and the frequency. Since the layout of
warehouse is like a chessboard, we adopt the Manhattan Distance to calculate the picking route and solve it by a state-of-the-art optimization solver on the computer.We have examined the mathematical model with the authentic data, and apply the systematic simulation to present how the optimization solver assigns the location. We can therefore conclude that the mathematical model efficiently reduces the picking route, which is not only useful but also easy
論文目次 第一章 緒論 ................................................... 1
第一節 研究背景 ............................................... 1
第二節 研究動機 ................................................2
第三節 研究目的 ................................................4
第四節 研究流程 ................................................4
第二章 文獻探討 ................................................6
第一節 倉庫設計 ................................................6
第二節 揀貨路徑安排 ............................................9
第三節 揀貨策略及儲存策略 ......................................13
第四節 指派法則 ................................................17
第五節 小結 ....................................................18
第三章 結合頻率及數量之最佳化規畫 ..............................20
第一節 問題描述 ................................................20
第二節 模式架構 ................................................24
第三節 數學模型建立 ............................................27
第四節 小結 ....................................................30
第四章 實驗分析 ................................................31
第一節 研究環境說明 ............................................31
第二節 實驗假設及原始資料模擬 ..................................32
第三節 最佳化運算 ..............................................34
第四節 實驗數據分析 ............................................37
第五章 結論 ....................................................41
第一節 研究貢獻 ................................................41
第二節 未來研究方向 ............................................42
參考文獻 .......................................................43
參考文獻 [中文]
黃靜, 2007年2月,《倉儲管理實務》[M].大連理工大學出版社
吳理門,2011年1月,物流案例與分析.天津大學出版社
張貿傑,民104年,最小成本訂單分配問題之研究—以IC設計公司為例,國立成功大學工業與資訊管理學系碩士論文
楊雅鈞,民96年,支援儲位管理作業之儲位規劃與儲位調整模式,國立清華大學工業工程與工程管理研究所碩士論文
蔡麗蕙,民92年,最佳揀貨績效之倉儲系統設計,中華大學科管所碩士學位論文
蕭文綺,民92年,不同訂單型態下,揀貨環境配置對揀貨效率之影響,國立高雄第一科技大學運輸倉儲營運所碩士論文
翁振凱,民91年,物流中心之揀貨最佳化,國立中央大學工業管理研究所碩士論文
吳迺昇,民96年,輸送帶輔助揀貨系統之建議作業指派推論模式,國立清華大學工業工程與工程管理研究所碩士論文
孫海蛟、董福慶,民84年,物流中心儲位管理,台北:經濟部商業司
陳莉萍,民90年,儲位佈置與揀貨路徑規畫於倉儲系統設計之探討,中華大學科技管理研究所碩士論文
蘇騰昇,民91年,物流中心之最佳化揀貨策略,國立中央大學工業管理研究所碩士論文
李雅雯,民107年,倉儲儲位改善及撿貨路徑之規劃,國立雲林科技大學工業工程與管理系碩士在職專班碩士論文
曾若涵,民106年,運用電腦模擬於自動倉儲系統效率之分析,元智大學工業工程與管理學系碩士論文
陳素芬,民89年,農產品網路超商LCFI儲位規劃效益評估,國立臺北科技大學生產系統工程與管理研究所
黃浩良、賴憲堂、吳光耀、林秀锜,民103年,「醫院庫房設施佈置規劃-以苗栗某綜合醫院為例」,聯大學報,第十一卷第二期, 147-171頁
陳志騰、林泓毅、張俊郁、李益銘、蕭宇倫,民104年,「結合商品關聯與EIQ方法論之IK分析應用於儲位指派之研究」,創新與經營管理學刊,第六卷第一期,59-78頁

[英文]
Caron, F., Marchet, G., & Perego, A. (2000). Optimal layout in low-level picker-to-part systems. International Journal of Production Research, 38(1), 101-117. Retrieved from https://doi.org/10.1080/002075400189608. doi:10.1080/002075400189608
de Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481-501. Retrieved from http://www.sciencedirect.com/science/article/pii/S0377221706006473. doi:https://doi.org/10.1016/j.ejor.2006.07.009
Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000). Ant algorithms and stigmergy. Future Generation Computer Systems, 16(8), 851-871. Retrieved from http://www.sciencedirect.com/science/article/pii/S0167739X0000042X. doi:https://doi.org/10.1016/S0167-739X(00)00042-X
Gibson D. R, & Sharp G. P. (1992). Order Batching Procedures. European Journal of Operational Research, 58, 57-67.
Goetschalckx, M., & Donald Ratliff, H. (1988). Order Picking In An Aisle. IIE Transactions, 20(1), 53-62. Retrieved from https://doi.org/10.1080/07408178808966150. doi:10.1080/07408178808966150
Gu, J., Goetschalckx, M., & McGinnis, L. F. (2010). Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research, 203(3), 539-549. Retrieved from http://www.sciencedirect.com/science/article/pii/S0377221709005219. doi:https://doi.org/10.1016/j.ejor.2009.07.031
Gue, K. R., Ivanović, G., & Meller, R. D. (2012). A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles. Transportation Research Part E: Logistics and Transportation Review, 48(4), 795-806. Retrieved from http://www.sciencedirect.com/science/article/pii/S1366554512000117. doi:https://doi.org/10.1016/j.tre.2012.01.002
Gue, K. R., & Meller, R. D. (2009). Aisle configurations for unit-load warehouses. IIE Transactions, 41(3), 171-182. Retrieved from https://doi.org/10.1080/07408170802112726. doi:10.1080/07408170802112726
Gue, K. R., Meller, R. D., & Skufca, J. D. (2006). The effects of pick density on order picking areas with narrow aisles. IIE Transactions, 38(10), 859-868. Retrieved from https://doi.org/10.1080/07408170600809341. doi:10.1080/07408170600809341
Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE Transactions, 25, 76-87. Retrieved from http://dx.doi.org/10.1080/07408179308964306.
Hwang, H., Baek, W. J., & Lee, M.-K. (1988). Clustering algorithms for order picking in an automated storage and retrieval system. International Journal of Production Research, 26(2), 189-201. Retrieved from https://doi.org/10.1080/00207548808947853. doi:10.1080/00207548808947853
J. Karasek. (2013). An overview of warehouse optimization. International journal of advances in telecommunications, 7.
James A. Tompkins, John A. White, Yavuz A. Bozer, & J. M. A. Tanchoco. (2010). Facilities planning: Wiley. 864.
Jarvis, J. M., & McDowell, E. D. (1991). Optimal Product Layout in an Order Picking Warehouse. IIE Transactions, 23(1), 93-102. Retrieved from https://doi.org/10.1080/07408179108963844. doi:10.1080/07408179108963844
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. Retrieved from http://science.sciencemag.org/content/220/4598/671.abstract. doi:10.1126/science.220.4598.671
Petersen Charles, G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management, 17(11), 1098-1111. Retrieved from https://doi.org/10.1108/01443579710177860. doi:10.1108/01443579710177860
Roodbergen, K. J., & de Koster, R. (2001). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133(1), 32-43. Retrieved from http://www.sciencedirect.com/science/article/pii/S0377221700001776. doi:https://doi.org/10.1016/S0377-2217(00)00177-6
Sadiq, M., Landers, T. L., & Don Taylor, G. (1996). An Assignment Algorithm for Dynamic Picking Systems. IIE Transactions, 28(8), 607-616. Retrieved from https://doi.org/10.1080/15458830.1996.11770706. doi:10.1080/15458830.1996.11770706
Vaughan, T. S. (1999). The effect of warehouse cross aisles on order picking efficiency. International Journal of Production Research, 37(4), 881-897. Retrieved from https://doi.org/10.1080/002075499191580. doi:10.1080/002075499191580
Gray, A. E., Karmarkar, U. S., & Seidmann, A. (1992). Design and operation of an order-consolidation warehouse: Models and application. European Journal of Operational Research, 58(1), 14-36. Retrieved from http://www.sciencedirect.com/science/article/pii/037722179290232X. doi:https://doi.org/10.1016/0377-2217(92)90232-X
Harmatuck, D. J. (1976). A comparison of two approaches to stock location. Logistics and Transportation Review, 12(4), 282-284.
Heragu, S. S., Du, L., Mantel, R. J., & Schuur, P. C. (2005). Mathematical model for warehouse design and product allocation. International Journal of Production Research, 43(2), 327-338. Retrieved from https://doi.org/10.1080/00207540412331285841. doi:10.1080/00207540412331285841
Rosenwein, M. B. (1994). AN APPLICATION OF CLUSTER ANALYSIS TO THE PROBLEM OF LOCATING ITEMS WITHIN A WAREHOUSE. IIE Transactions, 26(1), 101-103. Retrieved from https://doi.org/10.1080/07408179408966588. doi:10.1080/07408179408966588
Ruben, R. A., & Jacobs, F. R. (1999). Batch Construction Heuristics and Storage Assignment Strategies for Walk/Ride and Pick Systems. Management Science, 45(4), 575-596. Retrieved from https://doi.org/10.1287/mnsc.45.4.575. doi:10.1287/mnsc.45.4.575
Vakali, A., & Terzi, E. (2002). Video data storage policies: An access frequency based approach. Computers & Electrical Engineering, 28, 447-464. doi:10.1016/S0045-7906(00)00068-9
Goh, M., Jihong, O., & Chung-Piaw, T. (2001). Warehouse sizing to minimize inventory and storage costs. Naval Research Logistics (NRL), 48(4), 299-312. Retrieved from https://doi.org/10.1002/nav.10. doi:10.1002/nav.10
Roodbergen, K. J., & Vis, I. F. A. (2006). A model for warehouse layout. IIE Transactions, 38(10), 799-811. Retrieved from https://doi.org/10.1080/07408170500494566. doi:10.1080/07408170500494566
Cardona, L. F., & Gue, K. R. (2019). How to determine slot sizes in a unit-load warehouse. IISE Transactions, 51(4), 355-367. Retrieved from https://doi.org/10.1080/24725854.2018.1509159. doi:10.1080/24725854.2018.1509159
Masae, M., Glock, C. H., & Vichitkunakorn, P. (2019). Optimal order picker routing in the chevron warehouse. IISE Transactions, 1-23. Retrieved from https://doi.org/10.1080/24725854.2019.1660833. doi:10.1080/24725854.2019.1660833
Tutam, M., & White, J. A. (2019). A multi-dock, unit-load warehouse design. IISE Transactions, 51(3), 232-247. Retrieved from https://doi.org/10.1080/24725854.2018.1488307. doi:10.1080/24725854.2018.1488307

[網站]
1.https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=13863
2.https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=15581
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw