進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1507202015160100
論文名稱(中文) 雙送粉式雷射披覆304L不鏽鋼與氧化鋁Al2O3陶瓷粉末之製程特性研究
論文名稱(英文) Characterizations of the laser cladding with twin powder feeders of 304L stainless steel and Al2O3 ceramic
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 林文品
研究生(英文) Wun-Pin Lin
學號 N16074873
學位類別 碩士
語文別 中文
論文頁數 133頁
口試委員 指導教授-林震銘
口試委員-陳鐵城
口試委員-施士塵
中文關鍵字 雷射披覆  粉末混合  粉末濃度分布  陶瓷基複合材料 
英文關鍵字 Laser Cladding  Powder Mixing  Powder Concentration Distribution  Ceramic Matrix Composite 
學科別分類
中文摘要 本研究採用25W的CO2雷射對氧化鋁(Al2O3)與304L不鏽鋼粉末進行雙送粉雷射披覆加工。實驗中設計了雙粉末混合器,改善傳統雷射披覆的單一送粉缺點。以Fluent軟體分析混合器中的粉末流場特性及粉末混合後從噴嘴送出之軸向與徑向濃度分布;再使用數值分析程式計算粉末從噴嘴出口至基板飛行過程中,粉末受雷射加熱作用的溫度變化。

經由粉末濃度分布實驗觀察得知基板黏附的氧化鋁粉末呈現正常分布,隨著偏離中心軸距離增加而黏附量降低。但不鏽鋼粉末因反彈效應不具有正常分布。但披覆試件隨著不鏽鋼送粉的比例提高,披覆層高度也會隨之提高。披覆試件的抗彎強度在不鏽鋼含量低時較高,含量高時試件的孔隙及裂紋導致抗彎強度降低。因此披覆試件的硬度,在不同的位置硬度不同。披覆層之金屬相的硬度偏低約為250 HV,其餘平均約為1750 HV。觀察披覆層金相組織,因淬火效應導致硬度增高及晶粒尺寸減小。
英文摘要 In this study, a 25W CO2 laser and a twin powder feeding system were applied to laser cladding with alumina (Al2O3) and 304L stainless steel powders. In the experiment, a powder mixer was designed to improve the traditional laser cladding process. Using Fluent software to analyze the flow field of the powder mixer, the axial and radial powder concentration distribution of the powder jet from the cladding nozzle were simulated. Numerical analysis program is used to calculate the temperature of the single powder with laser heating from the nozzle exit to the substrate.

In the experiment the powder concentration distribution indicates that the ceramic powder to the substrate exhibits a normal distribution, except for the stainless steel powder rebounding from the substrate. As the proportion of stainless steel powder was increased, the height of the cladding layer will increase in the laser cladding. When the amount of the stainless steel powder is increased, the strength of the cladding is lower due to the porosity and cracks in the specimen. The hardness of the cladding specimen varies at different locations. The hardness of the metal phase is about 250 HV, and the hardness of other portions is about 1750 HV in average. According to the microstructures of the cladding, it is found that the grain size of the metal phase is reduced with a slightly quenched condition to increase its hardness.
論文目次 摘要 I
Extended Abstract II
誌謝 IX
目錄 X
表目錄 XV
圖目錄 XVII
符號說明 XXII
第一章 緒論 1
1.1 研究背景與目的 1
1.2 文獻回顧 3
1.2.1 雷射披覆金屬-金屬材料 3
1.2.2 雷射披覆金屬-陶瓷材料 5
1.2.3 雷射披覆粉末流場 7
1.2.4 金屬基與陶瓷基複合材料 10
1.2.5 實驗參數對氧化鋁陶瓷雷射披覆成形與機械性質之影響 13
1.3 研究動機及方法 16
1.4 本文架構 17
第二章 應用理論 19
2.1 雷射披覆原理 19
2.1.1 雷射披覆機制[17] 19
2.1.2 雷射披覆加工參數對披覆試件品質的影響 20
2.1.2.1 雷射光學條件 20
2.1.2.2 雷射功率[18] 21
2.1.2.3 披覆速度[19] 22
2.1.2.4 稀釋率(Dilution)[19] 23
2.1.2.5 附著率(Catchment Efficiency)[20] 24
2.1.3 孔隙對披覆層機械性質之影響 24
2.2 固體-氣體兩相流應用理論[21] 25
2.2.1 連續相模型 25
2.2.2 離散相模型 27
2.3 雷射披覆粉末流場分布特性 30
2.3.1 粉末流濃度分布模型[5] 30
2.3.2 粉末披覆層模型建構[22] 33
2.4 同軸雷射粉末熱傳模型分析[23] 35
2.4.1 能量平衡方程式 36
2.4.2 粉末質量變率方程式 37
2.4.3 運動方程式 38
2.4.4 雷射能量強度 39
2.4.5 有限差分法 39
第三章 數值分析 41
3.1 粉末流場分析 41
3.1.1 Fluent軟體簡介[21] 41
3.1.2 Solidworks建構流場模型 42
3.1.3 分析流場描述與假設 44
3.1.4 粉末混合器內部粉末流場分析 45
3.1.4.1 混粉器模型建立與邊界條件設定 45
3.1.4.2 模擬結果與討論 48
3.1.5 噴嘴之粉末空間分布分析 53
3.1.5.1 噴嘴模型建立與邊界條件設定 53
3.1.5.2 模擬結果與討論 57
3.2 粉末受熱模型分析[24] 61
3.2.1 粉末熱傳計算流程 61
3.2.2 物理模型與假設 62
3.2.3 粉末受熱數值模擬結果 64
3.2.3.1 出口光斑直徑對應溫度之關係 65
3.2.3.2 粉末粒徑對應溫度之關係 67
3.2.3.3 粉末速度對應溫度之關係 68
3.3 數值分析總結 70
第四章 實驗 73
4.1 實驗設備規劃與粉末混合器製作 73
4.1.1 雷射披覆實驗設備 73
4.1.2 CO2雷射加工機 74
4.1.3 粉末混合器設計 75
4.2 披覆粉末性質 76
4.3 粉末分布觀測 79
4.3.1 送粉機質量流率校正 79
4.3.2 不同送粉比例之粉場分布 81
4.3.2.1 粉場分布測量方法 81
4.3.2.2 粉末圖像占比分析結果 85
4.4 雷射披覆實驗 92
4.4.1 不同送粉比例披覆之形貌結果 92
4.4.2 不同送粉比例對於披覆層內部結構比較 99
4.4.3 不同披覆速度結果比較 105
4.5 機械性質檢測 109
4.5.1 抗彎強度量測 109
4.5.1.1 三點式彎曲試驗設備[31] 109
4.5.1.2 三點式彎曲試驗結果 111
4.5.2 維氏硬度量測 114
4.5.3 顯微結構與分析[32] 118
4.6 結果與討論 120
第五章 結論 123
5.1 綜合討論 123
5.2 相關建議與未來發展 128
參考文獻 130
參考文獻 [1]D. Kotoban, A. Aramov, T. Tarasova, “Possibility of multi-material laser cladding fabrication of nickel alloy and stainless steel”, Physics Procedia, Volume 83, P.634-646, 2016.
[2]B. E. Carroll, R. A. Otis, J. P. Borgonia, J. O. Suh, R. P. Dillon, A. A. Shapiro, D. C. Hofmann, Z. K. Liu, A. M. Beese, “Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling”, Acta Materialia, Volume 108, P.46-54, 2016.
[3]P. P. Bandyopadhyay, V. K. Balla, S. Bose, A. Bandyopadhyay, “Compositionally Graded Aluminum Oxide Coatings on Stainless Steel Using Laser Processing”, Journal of the American Ceramic Society, Volume 90, Issue 7, P.1989-1991, 2007.
[4]P. Xu, C. X. Lin, C. Y. Zhou, X. P. Yi, “Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings”, Surface and Coatings Technology, Volume 238, P.9-14, 2014.
[5]A. J. Pinkerton, L. Li, “Modelling Powder Concentration Distribution From a Coaxial Deposition Nozzle for Laser-Based Rapid Tooling”, Journal of Manufacturing Science and Engineering, Volume 126, P.33-41, 2004.
[6]N. Yang, “Concentration model based on movement model of powder flow in coaxial laser cladding”, Optics & Laser Technology, Volume 41, Issue 1, P.94-98, 2009.
[7]H. Liu, X. L. He, G. Yu, Z. B. Wang, S. X. Li, C. Y. Zheng, W. J. Ning, “Numerical simulation of powder transport behavior in laser cladding with coaxial powder feeding”, Science China Physics, Mechanics & Astronomy, Volume 58, No.10:104701, 2015.
[8]I. A. Ibrahim, F. A. Mohamed, E. J. Lavernia, “Particulate reinforced metal matrix composites - a review”, Journal of Materials Science, Volume 26, P.1137-1156, 1991.
[9]I. W. Donald, P. W. McMillan, Review “Ceramic-matrix composites”, Journal of Materials Science, Volume 11, P.949-972, 1976.
[10]M. Rosso, “Ceramic and metal matrix composites: Routes and properties”, Journal of Materials Processing Technology, Volume 175, Issue 1-3, P.364-375, 2006.
[11]Z. Lu, J. Cao, Z. Song, D. Li, B. Lu, “Research progress of ceramic matrix composite parts based on additive manufacturing technology”, Virtual and Physical Prototyping, Volume 14, Issue 4, P.333-348, 2019.
[12]J. Deckers, J. Vleugels, J. P. Kruth, “Additive manufacturing of ceramics: A review”, Journal of Ceramic Science and Technology, P.245-260, 2014.
[13]V. K. Balla, S. Bose, A. Bandyopadhyay, “Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping”, International Journal of Applied Ceramic Technology, Volume 5, Issue 3, P.234-242, 2008.
[14]F. Y. Niu, D. J. Wu, S. Yan, G. Y. Ma, B. Zhang, “Process Optimization for Suppressing Cracks in Laser Engineered Net Shaping of Al2O3 Ceramics”, JOM, Volume 69, No.3, P.557-562, 2017.
[15]Y. Li, Y. Hu, W. Cong, L. Zhi, Z. Guo, “Additive manufacturing of alumina using laser engineered net shaping Effects of deposition variables”, Ceramics International, Volume 43, Issue 10, P.7768-7775, 2017.
[16]F. Niu, D. Wu, F. Lu, G. Liu, G. Ma, Z. Jia, “Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping”, Ceramics International, Volume 44, Issue 12, P.14303-14310, 2018.
[17]E. Toyserkani, A. Khajepour, S. Corbin, ‘‘Laser cladding’’, CRC press, 2004.
[18]E. Toyserkani, A. Khajepour, S. Corbin, “3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process”, Optics and Lasers in Engineering, Volume 41, Issue 6, P.849-867, 2004.
[19]E. Kannatey-Asibu Jr., ‘‘Principles of Laser Materials Processing’’, Woodhead Publishing Ltd., 2010.
[20]S. Carty, I. Owen, W. M. Steen, B. Bastow, J. T. Spencer, “Catchment Efficiency For Novel Nozzle Designs Used In Laser Cladding And Alloying”, Laser Processing: Surface Treatment and Film Deposition, P.395-410, 1996.
[21]ANSYS FLUENT 14.0 User Guide, ANSYS Inc., 2011.
[22]A. V. Gusarov, I. Smurov, “Direct laser manufacturing with coaxial powder injection: Modelling of structure of deposited layers”, Applied Surface Science, Volume 253, Issue 19, P.8316-8321, 2007.
[23]劉昶熠, “雷射披覆之溫度分析”, 國立成功大學機械工程研究所碩士論文, 2001.
[24]C. Y. Liu, J. Lin, “Thermal processes of a powder particle in coaxial laser cladding”, Optics & Laser Technology, Volume 35, Issue 2, P.81-86, 2003.
[25]N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titov, M. B. Ignatiev, “Absorptance of powder materials suitable for laser sintering”, Rapid Prototyping Journal, Volume 6, Issue 3, P.155-161, 2000.
[26]W. M. Steen, “Laser Material Processing”, Springer Companies, v4, 2010.
[27]P. Auerkari, “Mechanical and physical properties of engineering alumina ceramics”, Valtion teknillinen tutkimuskeskus (VTT), 1996.
[28]M. M. Hossain, M. R. Alam, T. Watanabe “Thermal Treatment of Al2O3, MgO, and CeO2 Granulated Powders by Induction Thermal Plasma: A Numerical Approach”, Japanese Journal of Applied Physics, Volume 52, Number 1S, 2013.
[29]V. Fallah, M. Alimardani, S. F. Corbin, A. Khajepour, “Temporal development of melt-pool morphology and clad geometry in laser powder deposition”, Computational Materials Science, Volume 50, Issue 7, P.2124-2134, 2011.
[30]黃威霖, “低功率雷射披覆氧化鋁Al2O3粉末之機械性質研究”, 國立成功大學機械工程研究所碩士論文, 2019.
[31]ASTM Standard C1611-18, “Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature”, 2018.
[32]邱品樵, “雷射披覆溫度於形貌控制與顯微結構之影響”, 國立成功大學機械工程研究所碩士論文, 2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2030-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2030-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw