進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1507202010162900
論文名稱(中文) 量子照明雷達的原理與性能分析
論文名稱(英文) The Principle and Performance Analysis of Quantum Illumination Radar
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 108
學期 2
出版年 109
研究生(中文) 韓亦宣
研究生(英文) Yi-Hsuan Han
學號 P46071238
學位類別 碩士
語文別 中文
論文頁數 107頁
口試委員 指導教授-楊憲東
口試委員-孫允平
口試委員-韓相宜
中文關鍵字 量子照明雷達  量子糾纏  量子光學  大氣衰減模型 
英文關鍵字 Quantum illumination radar  Quantum entanglement  Quantum optics  atmospheric attenuation model 
學科別分類
中文摘要 近年來,隱形戰鬥機的發展結合了材料科學的成果,在機身上塗抹一層吸波塗料,能夠大幅度地降地雷達散射截面,這使得傳統雷達無法發揮效果。為了對抗此一事實,利用量子效應的量子雷達開始受到廣泛關注。本文首先介紹各式量子雷達的運作原理以及各自的優缺點,接著著重介紹利用糾纏性質的量子照明雷達,此種雷達利用聯合測量來檢測返回的糾纏光子,以此獲得比雷射雷達還要更高的靈敏度、抗噪聲能力。由於發射的信號為單光子,量子照明雷達在偵查低反射率的目標物能夠獲得更大的雷達散射截面積,此項特點在探測隱形戰機時具有重大意義。本文將量子照明雷達的運作分成五個主題,分別對發射光源、大氣衰減、光子的反射、閒置光子的儲存、量子接收器,進行詳細的介紹。數值模擬表明當噪聲光子數愈多、信號光子愈少,則量子照明雷達的信噪比優勢就愈大。同時大氣反射率也會直接地影響量子照明雷達與傳統雷達的性能差距。
英文摘要 In recent years, the development of stealth fighters has combined the achievements of materials science, applying a layer of absorbing paint on the fuselage can greatly reduce the radar cross section, this makes traditional radars ineffective. To counter this fact, quantum radars that use quantum effects have begun to receive widespread attention. This article first introduces the operation principle of various quantum radars and their respective advantages and disadvantages. Next, focus on the introduction of quantum illumination radar using entangled properties. This kind of radar uses joint measurement to detect the returned entangled photons, thus obtaining obtain higher sensitivity and anti-noise ability than laser radar. Because the emitted signal is a single photon, the quantum illumination radar can obtain a larger radar scattering cross-sectional area in the detection of targets with low reflectivity. This feature is of great significance when detecting stealth fighters. This article divides the operation of quantum illumination radar into five topics, and introduces in detail the emission light source, atmospheric attenuation, photon reflection, storage of idle photons, and quantum receiver. Numerical simulations show that the greater the number of noise photons and the fewer signal photons, the greater the signal-to-noise ratio advantage of quantum illumination radar. At the same time, the atmospheric reflectivity will also directly affect the performance gap between quantum illumination radar and traditional radar.
論文目次 中文摘要 i
ABSTRACT iii
致謝 viii
圖目錄 xii
表目錄 xiv
符號表 xv
第 1 章 緒論 1
1.1 背景及文獻回顧 1
1.2 研究動機與目標 7
1.3 各章簡述 8
第 2 章 量子雷達 11
2.1 雷達與量子雷達簡介 11
2.2 單光子量子雷達與量子照明雷達 13
2.3 量子雷射雷達 16
2.4 量子干涉雷達 18
2.5 各式量子雷達的比較 21
第 3 章 量子照明雷達的運作 23
3.1 糾纏光源 23
3.1.1 雙模壓縮態 24
3.1.2 微波雙模壓縮態 26
3.2 雷達散射截面積 28
3.3 閒置光子的儲存 33
3.4 量子雷達接收器的種類 34
3.4.1 光參量放大器(Optical Parametric Amplifier) 34
3.4.2 相位共軛接收器(Phase-Conjugate Receiver) 37
3.4.3 和頻產生(Sum Frequency Generation, SFG) 40
3.5 探測噪聲 42
3.5.1 量子散粒噪聲(Shot Noise) 42
3.5.2 太陽背景輻射 43
3.5.3 暗電流噪聲(Dark Current) 43
3.5.4 信噪比(Signal-to-Noise Ratio) 44
3.6 量子成像 48
3.7 量子照明雷達的優勢歸納整理 52
第 4 章 信號傳播過程衰減模擬 56
4.1 相干態與高斯糾纏態的比較 56
4.2 大氣衰減與總反射率 59
4.2.1 溫度與衰減係數的關係 60
4.2.2 距離與角度和衰減係數的關係 62
4.3 量子照明探測錯誤機率模擬 64
4.3.1 反射率分析 64
4.3.2 相同探測錯誤機率對應的空間位置 66
4.3.3 高度固定時,水平距離與反射率關係 69
4.4 雷達散射截面結合大氣散射 71
4.5 敵機探測與我方探測機率比較 77
4.6 量子照明雷達抗干擾能力 81
第 5 章 結論 86
5.1 結果與討論 86
5.2 未來研究工作 87
參考文獻 88
附錄 A 相空間與相干態 94
附錄 B 共變異矩陣 97
附錄 C Quantum Chernoff bound 102
附錄 D 信噪比推導 104
參考文獻 [1] Seth Lloyd, “Enhanced Sensitivity of Photodetection via Quantum Illumination,” Science, Vol. 321, pp. 1463-1465, 12, Sep, 2008.
[2] Jeffrey H. Shapiro, Seth Lloyd, “Quantum illumination versus coherent-state target detection,” New Journal of Physics, Vol. 11, pp.063045, 24, Jun, 2009.
[3] Si-Hui Tan , Baris I. Erkmen , Vittorio Giovannetti , Saikat Guha , Seth Lloyd , Lorenzo Maccone , Stefano Pirandola , and Jeffrey H. Shapiro, “Quantum illumination with Gaussian states,” Physical. Review Letter, vol. 101, pp.253601, 18, Dec, 2008.
[4] Saikat Guha,Baris I. Erkmen, "Gaussian-state quantum-illumination receivers for target detection," PHYSICAL REVIEW A, Vol. 80, pp.052310, 10, Nov, 2009.
[5] E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Olivares, G. Brida, and M. Genovese, “Experimental Realization of Quantum Illumination,” PHYSICAL REVIEW LETTER, Vol. 110, pp.153603, 10, Apr, 2013.
[6] Zheshen Zhang, Sara Mouradian, Franco N. C. Wong, and Jeffrey H. Shapiro, “Entanglement-Enhanced Sensing in a Lossy and Noisy Environment,” PHYSICAL REVIEW LETTER, Vol. 114, pp.110506, 20, Mar, 2015.
[7] Shabir Barzanjeh ,Saikat Guha ,Christian Weedbrook ,David Vitali ,Jeffrey H. Shapiro , and Stefano Pirandola, "Microwave Quantum Illumination," PHYSICAL REVIEW LETTER, vol. 114, pp.080503, 27, Feb, 2015.
[8] Mikel Sanz, Kirill G Fedorov, Frank Deppe, and Enrique Solano, "Challenges in open-air microwave quantum communication and sensing," in 2018 IEEE Conference on Antenna Measurements & Applications (CAMA), Vasteras, 2018.
[9] David Luong ; Bhashyam Balaji ; Chung Wai Sandbo Chang ; Vadiraj Manjunath Ananthapadmanabha Rao ; Christopher Wilson, "Microwave Quantum Radar: An Experimental Validation," in International Carnahan Conference on Security Technology (ICCST), Montreal, QC, Canada, 2018.
[10] 徐世龙,胡以华,赵楠翔,王阳阳,李乐,郭力仁, “金属目标原子晶格结构对其量子雷达散射截面的影响,” 物理學報, Vol. 64,No. 15 154203, 2, 2015.
[11] 陈坤,陈树新,吴德伟,王希,史密, “曲面目标量子雷达散射截面分析,” 光學學報, Vol. 36,No.12, 12, 2016.
[12] 徐泽华,李伟,许强,郑家毅, “基于分光链路模拟的曲面量子雷达散射截面研究,” 空軍工程大學學報(自然科學版), Vol.20 No.1 1009-3516, 2, 2019.
[13] 孙俊,黄慧鑫, “量子雷达探测中的目标特性,” JOURNAL OF MICROWAVES, Vol.35 No.6 1005-6122, 12, 2019.
[14] 徐泽华,李伟,许强,郑家毅, “锥柱复合目标量子雷达散射截面分析,” 空軍工程大學學報(自然科學版), Vol.47 No.4 1004-4213, 4, 2018.
[15] Quntao Zhuang, Zheshen Zhang, and Jeffrey H. Shapiro, "Optimum mixed-state discrimination for noisy entanglement-enhanced sensing," PHYSICAL REVIEW LETTER, vol. 118, pp.040801, 27, Jan, 2017.
[16] Saikat Guha, "Receiver design to harness quantum illumination," in 2009 IEEE International Symposium on Information Theory, Seoul, 2009.
[17] Wilde, Mark M.; Tomamichel, Marco; Lloyd, Seth; Berta, and Mario, “Gaussian Hypothesis Testing and Quantum Illumination,” PHYSICAL REVIEW LETTER, Vol. 119, pp.120501, 18, Sep, 2017.
[18] ShengLi Zhang, JianSheng Guo, WanSu Bao, JianHong Shi, ChenHui Jin,XuBo Zou, and GuangCan Guo, "Quantum illumination with photon-subtracted continuous-variable entanglement," PHYSICAL REVIEW A, vol. 89, pp.062309, 9, Jun, 2014.
[19] Borja Ram´on G´omez, "Quantum Illumination Protocols," Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, June 2019, 2019.
[20] David Luong ; Bhashyam Balaji, "Quantum two-mode squeezing radar and noise radar: covariance matrices for signal processing," IET Radar, Sonar & Navigation, vol. 14, no. 1, pp. 97-104, Jan, 2020.
[21] David Luong, Anthony Damini, Bhashyam Balaji, C. W. Sandbo Chang, A. M. Vadiraj, Christopher Wilson, "A Quantum-Enhanced Radar Prototype," in 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 2019.
[22] S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, "Microwave quantum illumination using a digital receiver," Science Advances, Vol. 6, no. 19, eabb0451, 28, Jan, 2020.
[23] 邢惠惠, “量子关联在量子雷达研究中的应用,” 大連理工大學,理論物理,碩士, 2017.
[24] Christian Weedbrook, Stefano Pirandola, Jayne Thompson, Vlatko Vedral, and Mile Gu, "How Discord underlies the Noise Resilience of Quantum Illumination," New Journal of Physics, Vol.18, pp.043027, 18, Apr, 2016.
[25] M. J. Brandsema, "FORMULATION AND ANALYSIS OF THE QUANTUM RADAR," The Pennsylvania State University, The Graduate School, College of Engineering, 2017.
[26] Marco Lanzagorta, Quantum Radar, Morgan & Claypool, 2012.
[27] 刘凯,张钦伟,顾永建,李清亮, “量子照射雷达技术的基本原理与研究进展,” 電波科學學報, Vol. 32 Issue 2, pp. 161-169 , 4, 2017.
[28] Song Yang, Ningjuan Ruan, Xuling Lin, Zhiqiang Wu, "A Λ-type soft-aperture LADAR SNR improvement with quantum-enhanced receiver," in Proceedings Volume 9621, 2015 International Conference on Optical Instruments and Technology: Advanced Lasers and Applications, Beijing, China, 2015.
[29] 王书 任益充 饶瑞中 苗锡奎, “大气损耗对量子干涉雷达的影响机理,” 物理学报, 66(15): 150301, 3, 5, 2017.
[30] Pieter Kok, Brendon W. Lovett, Introduction to Optical Quantum Information Processing, Cambridge University Press, 2010.
[31] Sara L Mouradian, "Target Detection through Quantum Illumination," Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
[32] Si Hui Tan, "Quantum State Discrimination with Bosonic," Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.
[33] 张鹏举, “量子照明在雷达目标探测中的应用研究,” 電子科技大學,光學工程, 碩士, 2017.
[34] Biao Xiong, Xun Li, Xiao-Yu Wang, and Ling Zhou, "Improve Microwave Quantum Illumination Via Optical," Annals of Physics, Vol. 385, pp. 757-768, Octr, 2017.
[35] Matthew Reagor, Hanhee Paika, Gianluigi Catelanib, Luyan Sun, Christopher Axline, Eric Holland, Ioan M. Pop, Nicholas A. Maslukc, Teresa Brecht, Luigi Frunzio, Michel H. Devoret, Leonid Glazman, and Robert J. Schoelkopf, "Reaching 10 ms single photon lifetimes for superconducting aluminum cavities," Applied Physics Letters 102, Vol. 102, 16, May, 2013.
[36] C.W. Sandbo Chang, A.M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, "Quantum-Enhanced Noise Radar," Applied Physics Letters , vol.114, pp.112601, 18, Mar, 2019.
[37] M. Lanzagorta, "Low-brightness quantum radar," in Proceedings Volume 9461, Radar Sensor Technology XIX; and Active and Passive Signatures VI; 946113, Baltimore, Maryland, United States, 2015.
[38] Christian Weedbrook,Stefano Pirandola,Ra´ul Garc´ıa-Patron,Nicolas J. Cerf,Timothy C. Ralph,Jeffrey H. Shapiro, and Seth Lloyd, "Gaussian Quantum Information," REVIEWS OF MODERN PHYSICS, Vol.84, pp.621, 1, May, 2012.
[39] Y. Shih, "The Physics of Ghost imaging," in International Conference on Quantum Information 2008, Boston, Massachusetts United States, 2008.
[40] 钱佳川, “基于纠缠双光子信号的量子探测和成像实验,” 於 西安電子科技大學,信號與信息處理碩士, 2018.
[41] 郑名扬, “基于纠缠光源的量子成像理论与实验研究,” 於 中國科學技術大學,博士, 2013.
[42] Duncan G. England, Bhashyam Balaji, and Benjamin J. Sussman, “Quantum-enhanced standoff detection using correlated photon pairs,” PHYSICAL REVIEW A , vol. 99, pp.023828, 19, Feb, 2019.
[43] Thomas Gregory, Paul-Antoine Moreau, Ermes Toninelli, and Miles J. Padgett, "Imaging Through Noise With Quantum Illumination," Science Advances, Vol. 6, no. 6, eaay2652, 07, Feb, 2020.
[44] 王南淇, “約瑟夫森參數放大器的特性研究,” 國立清華大學物理學系碩士論文, 2019.
[45] Xiang-Bin Wang,Tohya Hiroshima, Akihisa Tomita, and Masahito Hayashi, “Quantum information with Gaussian states,” Physics Reports, vol. 448, pp. 1-111, Aug, 2007.
[46] Emanuele Polino, Mauro Valeri, Nicolò Spagnolo, Fabio Sciarrino, "Photonic Quantum Metrology," 13, Mar, 2020.
[47] J. Calsamiglia and R. Mu˜noz-Tapia,Ll. Masanes,A. Acin,E. Bagan, “The quantum Chernoff bound as a measure of distinguishability between density,” PHYSICAL REVIEW A, pp.032311, 7, March, 2008.
[48] Stefano Pirandola ,Seth Lloyd, "Computable bounds for the discrimination of Gaussian states," PHYSICAL REVIEW A, Vol. 78, pp.012331, 17, Jul, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw