進階搜尋


下載電子全文  
系統識別號 U0026-1507201918480800
論文名稱(中文) 二氧化鈦緩衝層對有機鈣鈦礦電阻式記憶體特性之研究
論文名稱(英文) Effect of Titanium Dioxide Buffer Layer on Organic Perovskite Resistive Random Access Memory
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 宋明聰
研究生(英文) Ming-Cong Song
學號 N26051039
學位類別 碩士
語文別 中文
論文頁數 83頁
口試委員 指導教授-施權峰
口試委員-蕭竹芸
口試委員-傅聖文
口試委員-黃正亮
口試委員-李偉民
中文關鍵字 鈣鈦礦  電阻式記憶體  二氧化鈦  氬氧比  潤濕性  氧空位 
英文關鍵字 CH3NH3PbI3  RRAM  titanium dioxide  argon-oxygen ratio  wettability  oxygen vacancy 
學科別分類
中文摘要 本論文研究方向以TiO2為有機鈣鈦礦薄膜電阻式記憶體(RRAM)之緩衝層,並分為兩個部分討論,第一部份討論緩衝層TiO2在不同膜厚及不同基板溫度下的元件特性。實驗發現TiO2為非晶相,當厚膜厚時,量測不到電阻轉換特性,可能與二氧化鈦緩衝層內本身導電有關,無法作為有機鈣鈦礦薄膜記憶體之緩衝層。適當的基板溫度使TiO2薄膜更緻密,當基板溫度300˚C時,HRS/LRS(ON/OFF ratio)相對於其他基板溫度條件下微有提升,高阻態特性(HRS)較為穩定。

第二部份討論當TiO2於不同氬氧比製程條件下,二氧化鈦緩衝層經UV光照後表面產生不同的潤濕性,導致在不同潤濕性基底上生長的鈣鈦礦薄膜的成核和晶粒生長顯示出有效控制晶粒尺寸增長的顯著差異,進而影響塗佈後所成長的有機鈣鈦礦薄膜晶粒的均勻性,我們設定調整氬氧比例Ar/O2= 24、6、3、2.4、1.2來討論。分為Ar/O2=24、6、3,Ar/O2=2.4、1.2,兩個部分來討論其趨勢變化。

當緩衝層二氧化鈦鍍製參數為Ar/O2=24、6、3,RRAM切換次數皆較無明顯提升,且Ar/O2=24、6之HRS較不穩定,其中Ar/O2=6之高低阻態比偏大,原因為氧化鈦之氧空位VO含量較高,使TiO2/鈣鈦礦界面引入更多電子轉移的電荷陷阱(電子缺陷態),因此可以顯著地阻止從鈣鈦礦到TiO2的電子注入,使電子注入速率降低,並且極大地促進了異質界面處的電荷複合(電子-電洞複合)速率,比較TiO2層較低VO密度的元件有更低的功率輸出,因此導致更大的滯後指數(ηforward/ηreverse)使I-V滯後變得更嚴重,而I-V滯後與ON/OFF ratio具有正關係,因此TiO2層中的VO密度也與ON/OFF ratio具有正關係,因此導致較嚴重的I-V滯後行為,而使ON/OFF ratio提升較高,約3個order(數量級)。當Ar/O2=3時,HRS較為穩定,但循環次數仍無明顯提升。

當Ar/O2=2.4、1.2時,隨著通氧量的提升,TiO2¬薄膜氧空位減少,減低了I-V滯後行為,因此降低了高低阻態比 (ON/OFF ratio),約為2個數量級,並且由於較佳的潤濕性,提升了晶粒大小的均勻性,有效提升了RRAM切換次數,約110次(小於2個order以下不包含),其中Ar/O2=2.4之Retention time達到1×104 s,在這段時間也保持著接近的ON/OFF ratio,顯示此參數具有良好且穩定的記憶特性。
英文摘要 In this study, titanium dioxide were prepared by magnetron sputtering deposition technology with different argon-oxygen ratios. Because titanium dioxide has light-induced hydrophilicity, the substrate is illuminated by UV-radiation prior to the growth of CH3NH3PbI3 organic perovskite film by spin coating(two-step method). Titanium dioxide prepared by different argon to oxygen ratios was used as a substrate. The UV light irradiation influenced the wetability of the substrates, altering the subsequently grain growth of the CH3NH3PbI3 perovskite film. Furthermore, the oxygen vacancy content of titanium dioxide was associated with the argon/oxygen ratio that also related to the I-V hysteresis of organic perovskite solar cells. Therefore, we use titanium dioxide films that were prepared by different argon/oxygen ratio as the substrate for the growth of the CH3NH3PbI3 organic perovskite films. Organic perovskite resistive random access memory (RRAM) devices were fabricated, and the carrier transport behavior was discussed.
論文目次 摘要 I
Extended Abstract III
致謝 XXII
圖目錄 XXVI
表目錄 XXXI
第1章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 論文架構 5
第2章 文獻回顧與理論基礎 6
2-1 有機無機混合鈣鈦礦薄膜製備方式與相關研究 6
2-1-1 旋轉塗佈法:一步法、兩步法 6
2-1-2 太陽能電池 8
2-2 二氧化鈦材料介紹 10
2-3 記憶體介紹 11
2-3-1 相變化記憶體(PCM) 12
2-3-2 磁阻式記憶體(MRAM) 14
2-3-3 鐵電記憶體(FeRAM) 15
2-4 電阻式記憶體(RRAM) 16
2-5 電阻轉換機制 21
2-5-1 金屬離子的電化學效應(Electrochemical metallization effect,ECM) 21
2-5-2 價電子轉換效應(Valance change effect,VCM) 23
2-5-3 熱化學效應(Thermochemical effect,TCM) 24
2-6 介電層導電機制 25
2-6-1 熱發射(Thermionic emission)蕭特基發射(Schottky emission) 26
2-6-2 空間電荷限電流(Space-Charge-Limited-Current,SCLC) 27
2-6-3 穿隧(Tunneling) 28
2-6-4 普爾-法蘭克發射(Poole-Frenkel emission) 29
2-6-5 歐姆接觸(Ohmic contact) 31
2-6-6 離子電導(Ionic conduction) 31
第3章 實驗步驟與方法 33
3-1 實驗流程 33
3-2 實驗步驟 33
3-2-1 ITO基板清洗 33
3-2-2 TiO2緩衝層薄膜鍍製 34
3-2-3 TiO2緩衝層薄膜退火 34
3-2-4 CH3NH3PbI3薄膜製備(旋轉塗佈法成長) 35
3-2-5 PMMA製備 36
3-2-6 蒸鍍上電極(Al) 37
3-3 濺鍍機介紹 38
3-4 物性與電性分析儀器介紹 39
3-4-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 39
3-4-2 X光繞射分析(X-ray diffraction,XRD) 40
3-4-3 橢圓偏光儀(Ellipsometer) 42
3-4-4 電壓-電流量測 43
第4章 結果與討論 45
4-1 以ZnO及TiO2為緩衝層對有機鈣鈦礦之可行性探討 45
4-2 緩衝層二氧化鈦不同鍍膜時間與基板溫度之電阻式記憶特性 48
4-2-1 不同鍍膜時間與基板溫度對二氧化鈦薄膜影響 49
4-2-2 緩衝層不同鍍膜時間與基板溫度對有機鈣鈦礦薄膜電阻式記憶體特性影響 50
4-2-3 結論 55
4-3 緩衝層二氧化鈦不同氬氧比之電阻式記憶特性比較結論 56
4-3-1 二氧化鈦不同氬氧比之電阻式記憶特性影響 57
4-3-2 結論 75
第5章 結論與未來規劃 76
5-1 結論 76
5-2 未來規劃 77
參考文獻 78

參考文獻 [1] W. Zhu, L. Kang, T. Yu, B. Lv, Y. Wang, X. Chen, et al., "Facile Face-Down Annealing Triggered Remarkable Texture Development in CH3NH3PbI3 Films for High-Performance Perovskite Solar Cells," ACS Appl Mater Interfaces, vol. 9, pp. 6104-6113, Feb 22 2017.
[2] C. Fei, L. Guo, B. Li, R. Zhang, H. Fu, J. Tian, et al., "Controlled growth of textured perovskite films towards high performance solar cells," Nano Energy, vol. 27, pp. 17-26, 2016.
[3] S. R. Raga, L. K. Ono, and Y. Qi, "Rapid perovskite formation by CH3NH2gas-induced intercalation and reaction of PbI2," J. Mater. Chem. A, vol. 4, pp. 2494-2500, 2016.
[4] Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, et al., "Quantum-dot-in-perovskite solids," Nature, vol. 523, pp. 324-8, Jul 16 2015.
[5] J. J. Valenzuela-Jáuregui, R. Ramı́rez-Bon, A. Mendoza-Galván, and M. Sotelo-Lerma, "Optical properties of PbS thin films chemically deposited at different temperatures," Thin Solid Films, vol. 441, pp. 104-110, 2003.
[6] S. Sengupta, M. Perez, A. Rabkin, and Y. Golan, "In situ monitoring the role of citrate in chemical bath deposition of PbS thin films," CrystEngComm, vol. 18, pp. 149-156, 2016.
[7] S. Seghaier, N. Kamoun, R. Brini, and A. B. Amara, "Structural and optical properties of PbS thin films deposited by chemical bath deposition," Materials Chemistry and Physics, vol. 97, pp. 71-80, 2006.
[8] J. A. García-Valenzuela, M. R. Baez-Gaxiola, and M. Sotelo-Lerma, "Chemical bath deposition of PbS thin films on float glass substrates using a Pb(CH3COO)2–NaOH–(NH2)2CS–N(CH2CH2OH)3–CH3CH2OH definite aqueous system and their structural, optical, and electrical/photoelectrical characterization," Thin Solid Films, vol. 534, pp. 126-131, 2013.
[9] I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, "Structural and optical properties of PbS thin films obtained by chemical deposition," Thin Solid Films, vol. 307, pp. 240-244, 1997/10/10 1997.
[10] J. H. Im, I. H. Jang, N. Pellet, M. Gratzel, and N. G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nat Nanotechnol, vol. 9, pp. 927-32, Nov 2014.
[11] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, et al., "A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells," Angew Chem Int Ed Engl, vol. 53, pp. 9898-903, Sep 08 2014.
[12] Sang-Hun Jeong, Bong-Soo Kim and Byung-Teak Lee, "Structural and Optical Properties of TiO2 Films Prepared Using Reactive RF Magnetron Sputtering," Journal of the Korean Physical Society, Vol. 41, No. 1, July 2002, pp. 67∼72.
[13] K. Liang, D. B. Mitzi, and M. T. Prikas, "Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique," Chemistry of Materials, vol. 10, pp. 403-411, 1998/01/19 1998.
[14] Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, "Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications," Journal of Photonics for Energy, vol. 6, p. 022001, 2016.
[15] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, et al., "Planar heterojunction perovskite solar cells via vapor-assisted solution process," J Am Chem Soc, vol. 136, pp. 622-5, Jan 15 2014.
[16] Y. Li, J. K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. M. Toma, et al., "Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing," J Phys Chem Lett, vol. 6, pp. 493-9, Feb 05 2015.
[17] D. B. Mitzi, M. T. Prikas, and K. Chondroudis, "Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique," Chemistry of Materials, vol. 11, pp. 542-544, 1999/03/01 1999.
[18] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-8, Sep 19 2013.
[19] Damon Rafieian, Wojciech Ogieglo, Tom Savenije, and Rob G. H. Lammertink, "Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputtering," AIP Advances 5, 097168 (2015); doi: 10.1063/1.4931925.
[20] Bi, C. et al.,"Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, "Nat. Commun. 6, 7747 (2015).
[21] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, p. 151, 1970.
[22] Sang-Joon Park, Jeong-Pyo Lee, Jong Shik Jang, Hyun Rhu,Hyunung Yu, Byung Youn You, Chang Soo Kim, Kyung Joong Kim,Yong Jai Cho, Sunggi Baik and Woo Lee, "In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices," IOP PUBLISHING, NANOTECHNOLOGY, DOI: 10.1088/0957-4484/24/29/295202.
[23] K Safeen, V Micheli, R Bartali, G Gottardi and N Laidani, "Low temperature growth study of nano-crystalline TiO2 thin films deposited by RF sputtering," IOP Publishing, Journal of Physics D: Applied Physics, doi:10.1088/0022-3727/48/29/295201.
[24] P Stefanov, M Shipochka, P Stefchev, Z Raicheva, V Lazarova, L Spassov, "XPS characterization of TiO2 layers deposited on quartz plates," IOP Publishing, Journal of Physics: Conference Series 100 (2008) 012039, doi:10.1088/1742-6596/100/1/012039.
[25] B. Hwang, C. Gu, D. Lee, and J. S. Lee, "Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory," Sci Rep, vol. 7, p. 43794, Mar 08 2017.
[26] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, pp. 643-647, 2012.
[27] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, pp. 341-4, Oct 18 2013.
[28] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009/05/06 2009.
[29] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nat Mater, vol. 13, pp. 897-903, Sep 2014.
[30] Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, "Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films," J Phys Chem Lett, vol. 5, pp. 3335-9, Oct 2 2014.
[31] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, "Atomistic origins of high-performance in hybrid halide perovskite solar cells," Nano Lett, vol. 14, pp. 2584-90, May 14 2014.
[32] E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, et al., "Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells," J Phys Chem Lett, vol. 5, pp. 2390-4, Jul 03 2014.
[33] G. A. Sewvandi, D. Hu, C. Chen, H. Ma, T. Kusunose, Y. Tanaka, et al., "Antiferroelectric-to-Ferroelectric Switching inCH3NH3PbI3Perovskite and Its Potential Role in Effective Charge Separation in Perovskite Solar Cells," Physical Review Applied, vol. 6, 2016.
[34] Z. Fan, J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, et al., "Ferroelectricity of CH3NH3PbI3 Perovskite," J Phys Chem Lett, vol. 6, pp. 1155-61, Apr 02 2015.
[35] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, et al., "Phase Change Memory," Proceedings of the IEEE, vol. 98, pp. 2201-2227, 2010.
[36] "STT-MRAM can replace low-density DRAM and SRAM, especially for mobile and storage devices. But what is it and how does it differ from MRAM?," 2014.
[37] "Application of Ferroelectric Memory in New Generation Electronic Energy Meter," EET Electronic engineering album, 2010.
[38] N.H.Duc, "MAGNETO-ELECTROSTRICTIVE SPINTRONICS," Advanced Magnetism and Magnetic Materials, vol. 2, 2015.
[39] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[40] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat Mater, vol. 6, pp. 833-840, 11//print 2007.
[41] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, et al., "Giant switchable photovoltaic effect in organometal trihalide perovskite devices," Nat Mater, vol. 14, pp. 193-8, Feb 2015.
[42] B. Hwang, C. Gu, D. Lee, and J. S. Lee, "Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory," Sci Rep, vol. 7, p. 43794, Mar 08 2017.
[43] E. Yoo, M. Lyu, J.-H. Yun, C. Kang, Y. Choi, and L. Wang, "Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure," J. Mater. Chem. C, vol. 4, pp. 7824-7830, 2016.
[44] C. Gu and J. S. Lee, "Flexible Hybrid Organic-Inorganic Perovskite Memory," ACS Nano, vol. 10, pp. 5413-8, May 24 2016.
[45] Y. Liu, F. Li, Z. Chen, T. Guo, C. Wu, and T. W. Kim, "Resistive switching memory based on organic/inorganic hybrid perovskite materials," Vacuum, vol. 130, pp. 109-112, 2016.
[46] E. Yoo, M. Lyu, J.-H. Yun, C. Kang, Y. Choi, and L. Wang, "Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure," J. Mater. Chem. C, vol. 4, pp. 7824-7830, 2016.
[47] Z. Xu, Z. Liu, Y. Huang, G. Zheng, Q. Chen, and H. Zhou, "To probe the performance of perovskite memory devices: defects property and hysteresis," J. Mater. Chem. C, vol. 5, pp. 5810-5817, 2017.
[48] R. Waser, "Electrochemical and thermochemical memories," in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
[49] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, et al., "Metal–oxide RRAM," Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
[50] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014.
[51] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, pp. 586-613, 2015.
[52] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, p. 151, 1970.
[53] Choi, J., et al., "Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius," ACS Applied Materials & Interfaces, 2017. 9(36): p. 30764-30771.
[54] Feng Wang, Sai Bai, Wolfgang Tress, Anders Hagfeldt and Feng Gao, "Defects engineering for high-performance perovskite solar cells," npj Flexible Electronics (2018) 22, doi:10.1038/s41528-018-0035-z.
[55] Fan Zhang, Wei Ma, Haizhong Guo, Yicheng Zhao, Xinyan Shan, Kuijuan Jin, He Tian, Qing Zhao, Dapeng Yu, Xinghua Lu, Gang Lu, and Sheng Meng, "Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells, "Chemistry of Materials, DOI:10.1021/acs.chemmater.5b04019, Chem. Mater. 2016, 28, 802−812.
[56] Z. Xu, Z. Liu, Y. Huang, G. Zheng, Q. Chen, and H. Zhou, "To probe the performance of perovskite memory devices: defects property and hysteresis, " J. Mater. Chem. C, vol. 5, pp. 5810-5817, 2017.
[57] A. H. Chiou, C. G. Kuo, C. H. Huang, W. F. Wu, C. P. Chou, C. Y. Hsu, "Influence of oxygen flow rate on photocatalytic TiO2 films deposited by rf magnetron sputtering,"springer, J Mater Sci: Mater Electron (2012) 23:589–594, DOI 10.1007/s10854-011-0445-3.
[58] S. Chaiyakuna, A. Buranawongb, T. Deelertc and N. Witit-anund, "The Influence of Total and Oxygen Partial Pressures on Structure and Hydrophilic Property of TiO2 Thin Films Deposited by Reactive DC Magnetron Sputtering," Advanced Materials Research, ISSN: 1662-8985, Vols. 55-57, pp 465-468, doi:10.4028/www.scientific.net/AMR.55-57.465.
[59] M. Horprathuma, P. Eiamchaia, P. Chindaudoma, A. Pokaipisit, P. Limsuwan, "Oxygen Partial Pressure Dependence of the Properties of TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering," Published by Elsevier Ltd, Procedia Engineering 32 (2012) 676 – 682.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw