進階搜尋


下載電子全文  
系統識別號 U0026-1507201016172000
論文名稱(中文) 應用福衛三號小型電離層光度計之觀測資料分析探討極光區之範圍
論文名稱(英文) Determination of the Auroral Oval Region Based on FORMOSAT-3/COSMIC Tiny Ionospheric Photometer Data
校院名稱 成功大學
系所名稱(中) 太空天文與電漿科學研究所
系所名稱(英) Assistant, Institute of Space, Astrophysical and Plasma Sciences(ISAPS)
學年度 98
學期 2
出版年 99
研究生(中文) 黎藹琳
研究生(英文) Ai-Lin Lai
學號 la697401
學位類別 碩士
語文別 英文
論文頁數 90頁
口試委員 口試委員-葉惠卿
口試委員-汪愷悌
指導教授-談永頤
中文關鍵字 福衛三號  小型電離層光度計  極光圈  極光區電噴流 
英文關鍵字 FORMOSAT-3/COSMIC  Tiny Ionospheric Photometer  Auroral Ovals  Auroral Electrojets 
學科別分類
中文摘要 福衛三號小型電離層光度計用以量測135.6nm 波段的輻射光,為高空間解析度可計算水平方向的電離層結構,夜晚時此輻射光會隨著電離層電子密度的改變而改變。此篇研究中,我們使用2006年八月至2009年八月此光度計在北半球夜晚部分的衛星資料搭配量測地球磁場擾動的指標之一,AE指標,並以機率統計的方式定義出一種係數,此係數用於表示光度計測得之輻射光與AE指標的相關性。
本篇研究主要目的為利用此係數模式計算出在不同強度的地球磁場擾動下極光圈的邊界範圍,進一步比較極光圈範圍內光度計的輻射光與地球磁場擾動的相關性。研究結果顯示,當地球磁場擾動增強時,極光圈的邊界範圍會向赤道方向移動,而平均寬度則大致保持相同約 地磁緯度,隨著地磁當地時間不同極光圈的邊界範圍及寬度也有所不同。另外,當受到沈降粒子進入地球使得極光區電噴流增強進而增加地球磁場擾動,其影響的地磁緯度範圍也會增加,已於此篇研究結果作為驗證。
英文摘要 The Tiny Ionospheric Photometer (TIP) on FORMOSAT-3/COSMIC measures the radiance due to the emission at 135.6 nm with high spatial resolution of the horizontal structure of the ionosphere. During nighttime, this radiance varies with the electron density in the ionosphere below the satellite. In this research, we use both the nighttime data of TIP measurements, Auroral Electrojet index (AE index) from 2006 August to 2009 August, and apply the probability theory to define a coefficient statistically. The coefficient represents the relationships between the radiance measured by TIP and AE index.
The major purpose of this thesis is to apply the coefficient to determine the auroral oval boundaries during different intensities of geomagnetic disturbances. Furthermore, we investigate the relations of radiance and AE index inside the auroral oval. The results show that the auroral oval boundaries shift equatorward when geomagnetic disturbances increase, and the average widths of the auroral oval remain constant around magnetic latitudes. The auroral oval boundaries and widths vary with different magnetic local time. In addition, during precipitation of energetic particles down to the auroral oval, the auroral electrojet currents are enhanced, AE index are also affected by these currents. As AE increases, this can extend to higher and lower magnetic latitudes and the scenario is consistent with the results of this research.
論文目次 摘要 II
ABSTRACT III
ACKNOWLEDGEMENTS V
CONTENTS VII
LIST OF FIGURES IX
LIST OF TABLES XIII
1 INTRODUCTION 1
1.1 Background 1
1.1.1 Introduction to the Auroral Oval 1
1.1.2 Auroral Particle Precipitation 2
1.1.3 Brief Introduction to Ionosphere 3
1.2 Motivation and Objectives 6
1.3 Thesis Outline 7
2 INSTRUMENT AND OBSERVATIONS 8
2.1 Introduction to FORMOSAT-3/COSMIC 8
2.2 Introduciton to the Instrument 9
2.2.1 GPS Occultation Experiment(GOX) 9
2.2.2 Tiny Ionospheric Photometer(TIP) 9
2.3 Chemical Reaction Processes Related to TIP Measurements 11
2.4 Measurement of TIP 15
3 DATA PROCESSING 16
3.1 Data Processing of AE Index 16
3.1.1 Introduction to Auroral Electrojet(AE)Indices 16
3.1.2 Interpolation of AE Values 21
3.2 Introduciton to TIP Data 22
3.3 Process of Filtering TIP Data 25
4 METHODOLOGY 34
4.1 Introduction to Probability Density Function 34
4.1.1 Definition of Probability Density Functions 34
4.1.2 Application of Probability Density Functions 34
4.1.3 Discussion of PDFs for the Three Examples 38
4.2 Introduction to Cumulative Distribution Functions 39
4.2.1 Definition of Cumulative Distribution Functions 39
4.2.2 Comparison of Distributions using CDFs 41
4.2.3 Application of CDFs 44
4.2.4 Examples of the Application of Coefficients ƒ 51
4.3 Finding the Locations of the Boundaries of the Auroral Oval 54
4.3.1 Superposition of Data 54
4.3.2 Determining the Boundaries of Auroral Oval 56
4.3.3 Finding Boundaries Based on the Probabilities 59
4.3.3.1 Determination of the Peak Magnetic Latitude of Pp 59
4.3.3.2 Profile of Pp Relative to the Peak Magnetic Latitude 60
4.3.3.3 Determination of Boundaries 61
4.3.3.4 Additional Criterion for Boundaries under Special Circumstances 62
5 OBSERVATION AND DISCUSSIONS 65
5.1 Determination and Discussions of the Boundaries 65
5.2 Comparison of Coefficients in the Auroral Oval 78
6 CONCLUSIONS 85
6.1 Concluding Remarks 85
6.2 Future Works 85
REFERENCES 87
VITA 90
參考文獻 Abramowitz, M., and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, Mineola, New York.
Baker, J. B., C. R. Clauer, A. J. Ridley, V. O. Papitashvili, M. J. Brittnacher and P. T. Newell, The nightside poleward boundary of the auroral oval as seen by DMSP and the Ultraviolet imager, J. Geophys. Res., 105, 21267-21280, 2000.
Carlson, H. C., Jr., and A. Egeland, The aurora and the auroral ionosphere, Introduction to Space Physics, edited by M. G. Kivelson and C. T. Russell, 459-479, 1996.
Coker, C., K. F. Dymond, and S. A. Budizen , D. H. Chua, J. Y. Liu, D. N. Anderson, S. Basu, and T. R. Pedersen, Observations of the ionosphere using the tiny ionospheric photometer. TAO, 20, 227-235, 2009.
Consolini, G., and P. D. Michelis, Fractal time statistics of AE-index burst waiting times: evidence of metastability. Nonlinear Processes in Geophysics, 9, 419-423, 2002.
Davis, T. N., and M. Sugiura, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res., 75(3), 785-801, 1966.
Devore, J. L., Probability and Statistics for Engineering and the Sciences, 145-147, 1995.
Dymond, K. F., J. B. Nee, and R. J. Thomas, The Tiny Ionospheric Photometer: An Instrument for Measuring Ionospheric Gradients for the COSMIC Constellation. TAO, 11, 273-290, 2000.
Dymond, K. F., S. A. Budizen, and D. H. Chua, C. Coker, and J. Y. Liu, Tomographic reconstruction of the low-latitude nighttime electron density using FORMOSAT-3/COSMIC radio occultation and UV photometer data. TAO, 20, 215-226, 2008.
Hajj, G. A., E. R., Ibanez-Meier, E. R., Kurzinski, and L. J. Romans, Imaging the ionosphere with the Global Positioning System. Internet. J. of Imag. Syst. and Tech., 5, 174-184, 1994.
Hsu, M. L., P. K. Rajesh, and J. Y. Liu, Ionospheric electron density concurrently derived by TIP and GOX of FORMOSAT-3/COSMIC. TAO, doi:10.3319, 2008.
Jayachandran, P. T., E. F. Donovan, and J. W. MacDougall, SuperDARN E-region backscatter boundary in the dusk-midnight sector-tracer of equatorward boundary of the auroral oval. Annales Geophysicae, 20, 1899-1904, 2002.
Kelley, M.C., The Earth’s ionosphere: plasma physics and electrodynamics. Academic Press, San Diego, 1989.
Lin, C. H., Low-latitude ionosphere variations during magnetic disturbances, Jul. 2005, Ph.D. Thesis, National Central University.
Meier, R. R., Ultra violet spectroscopy and remote sensing of the upper atmosphere, Space Science Reviews, 58, 1991.
Melendez-Alvira, D. J., R. R. Meier, J. M. Picone, P. D. Feldman, and B. M. McLaughlin, Analysis of the oxygen nightglow measured by the Hopkins Ultraviolet Telescope: implications for ionospheric partial radiative recombination rate coefficients, J. Geophys. Res., 104, 14901-14913.
Morley, S. K., and D. V. Cotton, Identifying auroral boundaries using the TIMED-GUVI instrument. Australian Institute of Physics, 2008.
Newell, P. T., Y. I. Feldstein, and Y. I. Galperin and C. I. Meng, Morphology of nightside precipitation. J. Geophys. Res., 101, 10737-10748, 1996.
Paschmann, G., S. Haaland, and R. Treumann, Auroral Plama Physics, 247-248, 2003.
Rostoker, G., and T. D. Phan, Variation of auroral electrojet spatial location as a function of the level of magnetospheric activity, J. Geophys. Res., 91, 1716-1722, 1986.
Takahashi, K., C. Meng, T. Kamei, T. Kikuchi, and M. Kunitake, Near real-time Aurora Electrojet Index: An international collaboration makes rapid delivery of Aurora Electrojet Index. Space Weather 2, S110033, doi:10.1029/2004SW00011, 2004.
Tinsley, B. A., and J. A. Bittencourt, Determination of F region height and peak electron density at night using airglow emissions from atomic oxygen. J. Geophys. Res., 80, 2333-2337, 1975.
Tsai, H. F., J. Y. Liu, C. H. Lin, and M. L. Hsu, FORMOSAT-3/COSMIC Observations of the Ionospheric Auroral Oval Development. GPS Solut., doi: 10.1007/s10291-009-0137-0, 2009.
Wang, J., D.G. McCoy, A. J. Blake, and L. Torop, Effects of the close approach of potential curves in photoabsorption by diatomic molecules-Ⅱ. Temperature dependence of the cross section in the region 130-160 nm. J. Quantitative Spectroscopy and Radiative Transfer, 38, 19-27, 1987.
中央氣象局, 福爾摩沙衛星三號台灣資料分析中心(TACC)系統建置與維運計畫 TACC科學演算說明手冊 (version 2.06), 2, 2008
許美蘭、張博雅、蔡和芳、劉正彥, 福爾摩沙衛星三號小型電離層光度計, 物理雙月刊, 第二十八卷第六期, 933-937, 2006

Reference Websites:
1.AE values:http://wdc.kugi.kyoto-u.ac.jp
2.TIP measurements:http://tacc.cwb.gov.tw/cdaac
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw