進階搜尋


下載電子全文  
系統識別號 U0026-1507201015014400
論文名稱(中文) 混合物毒性潛能指標之建置研究
論文名稱(英文) The Study of Constructing TPI for Mixture Materials
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 朱筧虹
研究生(英文) Chien-Hung Chu
學號 n1697155
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 指導教授-陳家豪
口試委員-施勵行
口試委員-黃金沺
中文關鍵字 毒性潛能指標  生命週期評估  物質安全資料表  混合物 
英文關鍵字 Toxic Potential Indicator(TPI)  Life Cycle Assessment(LCA)  Material Safety Data Sheet(MSDS)  mixture 
學科別分類
中文摘要 毒性潛能指標(Toxic Potential Indicator, TPI)為一套不同於一般生命週期評估(Life Cycle Assessment, LCA)的方法,能直接依據材料的物質安全資料表(Material Safety Data Sheet, MSDS)評估出產品對於環境所造成的衝擊大小並將其數值化的指標方法。
當在使用毒性潛能指標方法對混合物產品進行毒性潛能評估時,經常會面臨到無法得到混合物之分子量,使得無法對毒性潛能指標評估方法當中一項控制參數之單位做轉換,以致於在使用毒性潛能指標方法進行毒性潛能評估時出現障礙與困難。
本研究提出三種建置混合物毒性潛能指標之方法,並且在分析完這三種方法各項優缺點之後,採用「取個別純物質中最小MAK當量值」之方法,來計算混合物產品之毒性潛能指標值,並提出一套混合物毒性潛能指標的建置流程。
英文摘要 Toxic Potential Indicator (TPI) methodology is an assessment method which differs from the traditional Life Cycle Assessment (LCA) methods. TPI methodology can directly estimate and digitize the environmental impact that caused by the products only according to the Material Safety Data Sheet (MSDS) of the products.
When the designer applies TPI methodology into mixture products to estimate the environmental impact, the designer will often face an obstacle that the unit of mixtures’ MAK is ppm, and the molecular weight of mixtures can’t be obtained. Therefore, the designer can’t transform the unit of mixtures’ MAK from ppm into mg/m3.
This study proposes three feasible methods to evaluate the TPI value of mixture products. After comparing these three feasible methods’ advantages and defects, this study proposes a best method to construct the TPI value of mixture product. Constructing the products’ TPI with mixtures not only can evaluate the environmental impact, but also can help the designer developing sustainable products.
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
符號說明 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 6
1.4 本文架構 7
第二章 毒性潛能指標 9
2.1 產品之毒性潛能指標 9
2.2 物質安全資料表 10
2.3 毒性潛能指標之評估架構及評估項目 12
2.4 毒性潛能指標之計算架構及計算方式 24
2.5 毒性潛能指標計算範例 - 鋁(aluminum) 26
第三章 毒性潛能指標評估改良方法 37
3.1 毒性潛能指標評估改良方法架構 37
3.2 中文語詞物質危害風險分類表 39
3.3 危害衝擊評估結果表 42
第四章 純物質及混合物介紹 45
4.1 純物質 45
4.2 純物質單位轉換介紹 46
4.3 混合物 47
4.4 純物質與混合物之物質安全資料表的比較 49
4.4.1 物品名稱 49
4.4.2 化學文摘社編號 50
4.4.3 成份辨識資料 51
4.5 混合物之毒性潛能指標建置的障礙 54
第五章 建置混合物之毒性潛能指標 55
5.1 混合物之毒性潛能指標建置方法 55
5.1.1 將個別純物質之TPI 做加總 56
5.1.2 取個別純物質中最小MAK 當量值 56
5.1.3 忽略MAK 值 58
5.2 混合物產品之毒性潛能指標實例建置 60
5.2.1 建置混合物之毒性潛能指標 - TS-600 清洗溶劑 60
5.2.2 建置混合物之毒性潛能指標 - SNOW FLAKE 141 69
5.2.3 建置混合物之毒性潛能指標 - Admila#PA 黑色 79
5.3 比較混合物毒性潛能指標之建置方法 89
5.4 混合物毒性潛能指標之建置流程 93
第六章 結論與建議 97
6.1 結論 97
6.2 建議 99
參考文獻 101
自述 109
參考文獻 1. Chen, J. L., Chen, C. M., Yen, S.-B., Chiou, J. Y. R., Yeh, S. F. and Liu, C.-Y., “Toxic Potential Indicator (TPI) for Material Assessment in Automobile Industry,” Proceedings of EcoDesign 2005: 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 244-245, Tokyo, Japan, December 12-14, 2005.
2. Chen, J. L., Kuo, T.-Y., Chen, C. M., Yen, S.-B., Chiou, J. Y. R., Yeh, S. F. and Liu, C.-Y., “Product Assessment by TPI and Cost Value Ratio,” Proceedings of Going Green-CARE INNOVATION 2006, Vienna, Austria, November 13-16, 2006.
3. Chen, J. L. and Yen, S.-B., “A Modified Toxic Potential Indicator for Taiwan,” Proceedings of EcoDesign 2007: 5th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, B1-1-2S, Tokyo, Japan, December 10-13, 2007.
4. EC(European Communities), Commission Directive 2001/59/EC of 6 August 2001 adapting to technical progress for the 28th time Council Directive 67/548EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labeling of dangerous substances, Official Journal of the European Communities, Vol. 44, L225, August 21, 2001.
5. Fujino, M., Suga, T. and Hamano, H., “Customization of The Toxic Potential Indicator for Japanese Regulation,” Proceedings of EcoDesign 2005: 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, Dec. 12-14, 2005.
6. Gune, P. and Sheng, P., “Influence of Site Specific Factors in Environmentally-Conscious Manufacturing,” Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE) on Life-Cycle Engineering, Vol. MED 2-2, pp. 861-870, San Francisco, California, November 12-17, 1995.
7. Horvath, A., Hendrickson, C. T., Lave, L. B., McMichael, F. C. and Wu, T. S., “Toxic Emissions Indices for Green Design and Inventory,” Environmental Science and Technology, Vol. 29, No. 2, pp. A86-A90, 1995
8. ISO (International Standard Organization), International Standard ISO 11014-1: Safety data sheet for chemical products – Part 1, First edition, March 15, 1994.
9. Middendrof, A., Nissen, N. F., Griese, H., Müller, J., Pötter, H., Reichl, H. and Stobbe, I., “EE-Toolbox – A Modular Assessment System for the Environmental Optimization of Electronics,” Proceedings of the 2000 IEEE International Symposium on Electronics and the Environment, pp. 166-171, San Francisco, California, May 8-10, 2000.
10. Middendrof, A., Griese, H. and Reichl, H., “MikroNetz – Development of Switched Power Supplies using Mircosystem Technology,” Proceedings of EcoDesign 2003: 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 786-791, Tokyo, Japan, December 8-11, 2003.
11. Müller, J., Griese, H., Nissen, N. F., Pötter, H. and Reichl, H., “Environmental Aspects of PCB Microintegration,” Proceedings of EcoDesign ’99: First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 216-220, Tokyo, Japan, February 1-3, 1999.
12. Müller, J., Hagelüken, M., Griese, H. and Reichl, H., “Technological Innovation Started by Environmental Concerns,” Proceedings of Electronics Goes Green 2004+, pp. 315-319, Berlin, Germany, September 6-8, 2004.
13. Nissen, N. F., Griese, H., Middendrof, A., Müller, J., Pötter, H. and Reichl, H., “A New Model to Bridge the Gap between Full Life Cycle Evaluations and Product Design,” Proceedings of the 1997 IEEE International Symposium on Electronics and the Environment, pp. 182-187, Piscataway, New Jersey, May 5-7, 1997.
14. Nissen, N. F., Griese, H., Middendrof, A., Müller, J., Pötter, H. and Reichl, H., “An Environmental Comparison of Packaging and Interconnection Technologies,” Proceedings of the 1998 IEEE International Symposium on Electronics and the Environment, pp. 106-111, Oak Brook, Illinois, May 4-6, 1998.
15. Nissen, N. F., Griese, H., Middendrof, A., Müller, J., Pötter, H. and Reichl, H., “Environmental Screening of Packaging and Interconnection Technologies,” ’99: First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp.754-759, Tokyo, Japan, February 1-3, 1999.
16. Schischke, K., Deubzer, O., Griese, H. and Stobbe, I., “LCA for Environmental Management and Eco-Design in the Electronics Industry-State of the Art and Screening Approaches-,” Proceedings of the internet-based InLCA/LCM 2002 conference, www.lcacenter.org/lca-lcm, May 20-25, 2002a.
17. Schischke, K., Griese, H., Müller, J., Reichl, H. and Stobbe, I., “Lean Environmental Management for Green Processes in Electronics Manufacturing - The Screening Assessment Tool ProTox-,” Proceedings of Electronic Circuits World Convention, Cologne, Germany, October 7-9, 2002b.
18. Sheng, P., Willis, B., III and Shiovitz, A., “Influence of Computer Chassis Design on Metal Fabrication Waste Streams,” Proceedings of the 1995 IEEE International Symposium on Electronics and Environment, Orlando, Florida, pp. 209-215, May 1-3, 1995.
19. Sheng, P. and Hertwich, E., “Indices for Comparative Waste Assessment in Environmentally-Conscious Manufacturing,” Journal of Manufacturing Science and Engineering, Vol. 120, pp. 129-140, 1998.
20. Srinivasan, M., Wu, T. and Sheng P., “Development of a Scoring Index for the Evaluation of Environmental Factors in Machining Processes: Part 1 – Health Hazards Score Formulation, “Transactions of NAMRI, Vol. 23, pp. 115-122, 1995.
21. UBA (Federal Environment Agency of German), Administrative Regulation on the Classification of Substances hazardous to waters into Water Hazard Classes (VwVws), Berlin, German, July 27, 2005.
22. Yen, S.-B. and Chen, J. L., “The Development of Taiwan’s Toxic Potential Indicator(TPI)”, Proceeding of EcoDesign 2003: 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 632-635, Tokyo, Japan, December 8-11, 2003.
23. Yen, S.-B. and Chen, J. L., “Calculation of a Toxic Potential Indicator Via Chinese-language Material Safety Data Sheets,” Journal of Industrial Ecology, Vol. 13 No. 3, pp. 455-466, 2009.
24. 安全衛生技術中心,化學品全球分類與標示調和制度(GHS)訓練班教材,第五單元: 混合物分類介紹,5月,2008。
25. 朱冠誌,評估印刷電路板製造所產生的環境衝擊影響之研究,國立成功大學機械工程學系碩士論文,台南市,6月,2001。
26. 朱冠誌 與 陳家豪,“評估印刷電路板製造所產生的環境衝擊影響之研究”,2001PCB製造技術研討會,元智大學,中壢,6月23日,2001a。
27. 朱冠誌 與 陳家豪,“印刷電路板之生命週期評估與毒性潛能分析”,中國機械工程學會第十八屆全國研討會論文集,台灣科技大學,台北市,12月7-8日,2001b。
28. 參考網址 http://avogadro.chem.iastate.edu/MSDS/Al_powder.htm
29. 陳正銘,毒性潛能指標於車用化學物質之評估技術研究,國立成功大學機械工程學系碩士論文,台南市,6月,2005。
30. 陳正銘,陳家豪,嚴聖博,邱應瑞,葉顯芳,徐培鈞 與 劉振玉,“毒性潛能指標(TPI)於台灣汽車產業的應用”,2005 永續性產品與產業管理研討會論文集,pp. 340-348,台北科技大學,3月26日,2005a。
31. 陳正銘,陳家豪,嚴聖博,邱應瑞,葉顯芳,徐培鈞 與 劉振玉,“毒性潛能指標(TPI)於台灣汽車產業的應用”,工安環保報導,第二十五期,pp. 21-25,2005b。
32. 陳正銘,陳家豪,嚴聖博,邱應瑞,葉顯芳 與 劉振玉,“毒性潛能指標於車用化學物質之評估技術研究”,中國機械工程學會第二十二屆全國研討會論文集,中央大學,中壢,11月25-26日,2005c。
33. 陳家豪 與 嚴聖博,建立光電相關產業毒性潛能指標,台灣電子檢驗中心委託學術機構研究計畫成果報告,11月,2002。
34. 陳家豪,郭泰佑,嚴聖博 與 陳正銘,“車用化學物質使用之評估技術”,福特六和汽車公司委託學術機構研究計畫成果報告,7月,2006。
35. 陳瑞彬,以網際網路為基礎之電腦輔助綠色設計系統之研究,國立成功大學機械工程學系碩士論文,台南市,6月,2002。
36. 郭泰佑,車用化學物質之綜合評估指標,國立成功大學機械工程學系碩士論文,台南市,6月,2006。
37. 郭泰佑,陳家豪,嚴聖博,邱應瑞,葉顯芳 與 劉振玉,“車用化學物質之綜合評估指標”,2006 永續性產品與產業管理研討會論文集,成功大學,3月18日,2006。
38. 嚴聖博,陳家豪,陳潤明,卓訓全 與 王瀅琇,“毒性潛能指標(TPI)在台灣之初步應用”,2003永續性產品與產業管理研討會論文集,成功大學,3月15日,2003。
39. 嚴聖博 與 陳家豪,“毒性潛能指標於台灣之改良應用研究”,2006 永續性產品與產業管理研討會論文集,成功大學,3月18日,2006。
嚴聖博,建構物質綠色潛能指標之研究,國立成功大學機械工程學系博士論文,台南市,7月,2009。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw