進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1506202016475400
論文名稱(中文) 乾季渠道型河床垂直通量估算
論文名稱(英文) Estimating Streambed Vertical Flux in Channelized River During Dry Season
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 陳孟漢
研究生(英文) Meng-Han Chen
學號 N86071073
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-孫建平
口試委員-石棟鑫
口試委員-羅偉誠
中文關鍵字 伏流水垂直通量  MODFLOW  人工河道  影響因子 
英文關鍵字 Vertical Flux  Numerical Simulation  Influential Factors 
學科別分類
中文摘要 台灣年平均雨量為世界平均的2.5倍,但由於以中央山脈為主等高山聳立,造成台灣坡陡流急,不易留住水資源,且人口密度增加,人均用水的上升,開發新興水資源有其必要性,與此同時也須兼顧生態環境等影響,合理的開發、永續經營為一大發展主軸。
伏流水,其在水資源貢獻或生態上功能被廣泛的討論以及應用,潛藏於河川下方豐沛水源、提供複雜生態的基礎單元,理應在該領域有相當良好發展地位,台灣機械抽取伏流水的技術也是行之有年,平衡了許多地區各目標用水解決水源不足。然而天然的伏流水湧出並非隨處可見,且天然的湧出及下滲對生態有重大意義,本研究針對屏東萬巒鄉五溝村五萬排水圳,其為一底床不封的渠道型河川,利用野外調查與配合地下水模式(GMS-MODFLOW)模擬的方式,建立符合當地的伏流水湧出、下滲之通量計算,調查期間河段的平均下滲量達2.919 (m^3/d);平均上湧量達123.802(m^3/d);平均淨垂直通量達120.884 (m^3/d),並探討可能因子的影響程度。
本篇以水文、地質驅動因子等為控制變因,進一步想釐清潛在因子的影響程度。調查期間,由1月初至3月18日,期間總雨量為90 (mm),現地可以觀察到垂直通量有隨著降雨量更動而變化,因此,本篇認為雨量可能為主導因子,但是透過敏感度分析及MODPATH判定初始地下水位對於該研究區域的結果影響可高達21.8%,其次為河川水位的2.8%,而雨量只佔了0.017%,也就是說控制本篇研究區域伏流水的湧出量的決定性因子為當地初始地下水位。
英文摘要 In this paper, it’s essential to understand the water exchange between surface and subsurface, because the upwelling flows from hyporheic-zone to rivers would cause positive effect to the complexed riverbed ecosystem. Furthermore, the amount of flow exchange between surface and subsurface water differ in the variation of riverbed material, and leads to robust ecosystem. Thus, the amount of flow exchange between surface and subsurface water should be a crucial subject in river ecosystem studies. To have further understanding in the flow exchange between surface and subsurface water, MODFLOW was applied to establish a hydrogeological model for drainage of Wugou village and the vertical flux between the surface water and groundwater was simulated. Essential data were collected in the dry season (from 01.04.2020-03.18.2020). The results show that the upwelling flux was about 40 times higher than downwelling flux. Through the model, the most influential factor was the initial groundwater level. In other words, the initial groundwater level controls the most parts vertical flux during the dry season in 2020.
論文目次 摘要 i
謝誌 viii
目錄 x
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 論文架構 2
第二章 文獻回顧 4
2-1 伏流水定義 4
2-2 量化通量發展&方向 4
2-3 伏流時間推估 7
2-4 伏流水影響因子&尺度 8
2-5 伏流水於生態的重要性 9
第三章 研究方法 11
3-1 研究區域 11
3-2 水文地質 13
3-3 模式建立 18
3-4 相關資料蒐集 20
3-5 HEC-RAS 28
3-6 GMS-MODFLOW 29
3-7 GMS-MODPATH 31
3-8 模式率定與驗證 33
3-9 潛在因子影響程度 34
第四章 結果與討論 38
4-1 現地採樣結果 38
4-2 HEC-RAS 42
4-3 GMS-MODFLOW 43
4-4 模式驗證 51
4-5 主導控制因子及其影響程度 61
4-6 隨著尺度潛在影響因子變化 67
4-7 季節性垂直通量 68
第五章 結論與建議 69
5-1 結論 69
5-2 建議 70
參考文獻 71
附錄 77
參考文獻 英文文獻

Alexander, M. D., & Caissie, D. Variability and Comparison of Hyporheic Water Temperatures and Seepage Fluxes in a Small Atlantic Salmon Stream 1. Groundwater, 41(1), 72-82. (2003)
Alley, W. M., Healy, R. W., LaBaugh, J. W., & Reilly, T. E. Flow and storage in groundwater systems. Science, 296(5575), 1985-1990. (2002)
Alyamani, M. S., & Şen, Z. Determination of hydraulic conductivity from complete grain‐size distribution curves. Groundwater, 31(4), 551-555. (1993)
Baxter, C. V., Hauer, F. R., & Woessner, W. W. Measuring groundwater-stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity. Transactions of the American Fisheries Society, 132(3), 493-502. doi:10.1577/1548-8659(2003)132<0493:Mgwent>2.0.Co;2. (2003)
Boano, F., Camporeale, C., Revelli, R., & Ridolfi, L. Sinuosity‐driven hyporheic exchange in meandering rivers. Geophysical Research Letters, 33(18). (2006)
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., & Wörman, A. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603-679. (2014)
Boulton. Stream ecology and surface-hyporheic hydrologic exchange: implications, techniques and limitations. Marine and Freshwater Research, 44(4), 553-564. (1993)
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29(1), 59-81. (1998)
Briggs, M. A., Lautz, L. K., Buckley, S. F., & Lane, J. W. Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling. Journal of Hydrology, 519, 1739-1751. (2014)
Briggs, M. A., Lautz, L. K., McKenzie, J. M., Gordon, R. P., & Hare, D. K. Using high‐resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resources Research, 48(2). (2012)
Broecker, T., Teuber, K., Sobhi Gollo, V., Nützmann, G., Lewandowski, J., & Hinkelmann, R. Integral Flow Modelling Approach for Surface Water-Groundwater Interactions along a Rippled Streambed. Water, 11(7), 1517. (2019)
Brunke, M. Colmation and depth filtration within streambeds: retention of particles in hyporheic interstices. International Review of Hydrobiology, 84(2), 99-117. (1999)
Buffington, J. M., & Tonina, D. Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass, 3(3), 1038-1062. (2009)
Cardenas, M. B. Surface water‐groundwater interface geomorphology leads to scaling of residence times. Geophysical Research Letters, 35(8). (2008)
Cardenas, M. B., Wilson, J., & Zlotnik, V. A. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 40(8). (2004)
Cardenas, M. B., Wilson, J. L., & Haggerty, R. Residence time of bedform-driven hyporheic exchange. Advances in Water Resources, 31(10), 1382-1386. (2008)
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. (2002)
Chunn, D., Faramarzi, M., Smerdon, B., & Alessi, D. S. Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–Surface water interactions in West-Central Alberta. Water, 11(1), 110. (2019)
Cremeans, M., Devlin, J., McKnight, U. S., & Bjerg, P. L. Application of new point measurement device to quantify groundwater-surface water interactions. Journal of contaminant hydrology, 211, 85-93. (2018)
Dole-Olivier, M.-J., Wawzyniak, V., Des Chatelliers, M. C., & Marmonier, P. Do thermal infrared (TIR) remote sensing and direct hyporheic measurements (DHM) similarly detect river-groundwater exchanges? Study along a 40 km-section of the Ain River (France). Science of The Total Environment, 646, 1097-1110. (2019)
Endreny, T., Lautz, L., & Siegel, D. Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models. Water Resources Research, 47(2). (2011)
Fleckenstein, J. H., Niswonger, R. G., & Fogg, G. E. River‐aquifer interactions, geologic heterogeneity, and low‐flow management. Groundwater, 44(6), 837-852. (2006)
Gilmore, T. E., Johnson, M., Korus, J., Mittelstet, A., Briggs, M. A., Zlotnik, V., & Corcoran, S. Streambed Flux Measurement Informed by Distributed Temperature Sensing Leads to a Significantly Different Characterization of Groundwater Discharge. Water, 11(11), 2312. (2019)
Gomez, J. D., Wilson, J. L., & Cardenas, M. B. Residence time distributions in sinuosity‐driven hyporheic zones and their biogeochemical effects. Water Resources Research, 48(9). (2012)
Gooseff, M. N., McKnight, D. M., Runkel, R. L., & Vaughn, B. H. Determining long time‐scale hyporheic zone flow paths in Antarctic streams. Hydrological Processes, 17(9), 1691-1710. (2003)
Gordon, R. P., Lautz, L. K., Briggs, M. A., & McKenzie, J. M. Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. Journal of Hydrology, 420, 142-158. (2012)
Haggerty, R., Wondzell, S. M., & Johnson, M. A. Power‐law residence time distribution in the hyporheic zone of a 2nd‐order mountain stream. Geophysical Research Letters, 29(13), 18-11-18-14. (2002)
Harvey, J. W., & Bencala, K. E. The effect of streambed topography on surface‐subsurface water exchange in mountain catchments. Water Resources Research, 29(1), 89-98. (1993)
Hester, E. T., & Doyle, M. W. In‐stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research, 44(3). (2008)
Hester, E. T., & Gooseff, M. N. (2010). Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams. In: ACS Publications.
Hvorslev, M. J. Time lag and soil permeability in ground-water observations: Waterways Experiment Station, Corps of Engineers, US Army. (1951)
Kalbus, E., Reinstorf, F., & Schirmer, M. Measuring methods for groundwater? surface water interactions: a review. (2006)
Kawanishi, R., Inoue, M., Dohi, R., Fujii, A., & Miyake, Y. The role of the hyporheic zone for a benthic fish in an intermittent river: a refuge, not a graveyard. Aquatic Sciences, 75(3), 425-431. (2013)
Käser, D. H., Binley, A., Heathwaite, A. L., & Krause, S. Spatio‐temporal variations of hyporheic flow in a riffle‐step‐pool sequence. Hydrological Processes: An International Journal, 23(15), 2138-2149. (2009)
Lautz, L. K., & Ribaudo, R. E. Scaling up point-in-space heat tracing of seepage flux using bed temperatures as a quantitative proxy. Hydrogeology Journal, 20(7), 1223-1238. (2012)
Lautz, L. K., & Siegel, D. I. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Advances in Water Resources, 29(11), 1618-1633. (2006)
Lewandowski, J., Arnon, S., Banks, E., Batelaan, O., Betterle, A., Broecker, T., . . . Galloway, J. Is the hyporheic zone relevant beyond the scientific community? Water, 11(11), 2230. (2019)
Magliozzi, C., Grabowski, R. C., Packman, A. I., & Krause, S. Toward a conceptual framework of hyporheic exchange across spatial scales. (2018)
Malzone, J. M., Anseeuw, S. K., Lowry, C. S., & Allen-King, R. Temporal Hyporheic Zone Response to Water Table Fluctuations. Groundwater, 54(2), 274-285. doi:10.1111/gwat.12352. (2016)
Marion, A., Packman, A. I., Zaramella, M., & Bottacin‐Busolin, A. Hyporheic flows in stratified beds. Water Resources Research, 44(9). (2008)
Marshall, J. C., Menke, N., Crook, D. A., Lobegeiger, J. S., Balcombe, S. R., Huey, J. A., . . . Sternberg, D. Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshwater Biology, 61(8), 1242-1258. (2016)
McCarthy, D. F., & McCarthy, D. F. Essentials of soil mechanics and foundations: Reston Publishing Company Virginia. (1977)
Mojarrad, B. B., Betterle, A., Singh, T., Olid, C., & Wörman, A. The effect of stream discharge on hyporheic exchange. Water, 11(7), 1436. (2019)
Montgomery, D. R., & Buffington, J. M. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109(5), 596-611. (1997)
Orghidan. Un nou domeniu de viata acvatica subterana:‘biotopul hiporeic’. Buletin Stiintific sectia de Biologie si stiinte Agricole si sectia de Geologie si Geografie, 7(3), 657-676. (1955)
Orghidan. Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Arch. Hydrobiol, 55(3), 392-414. (1959)
Orghidan. A new habitat of subsurface waters: the hyporheic biotope. Fundamental and applied limnology, 176(4), 291. (2010)
Ren, J., Wang, X., Zhou, Y., Chen, B., & Men, L. An analysis of the factors affecting hyporheic exchange based on numerical modeling. Water, 11(4), 665. (2019)
Rosenberry, D. O., & LaBaugh, J. W. (2008). Field techniques for estimating water fluxes between surface water and ground water (2328-7055). Retrieved from
Song, J., Chen, X., Cheng, C., Summerside, S., & Wen, F. Effects of hyporheic processes on streambed vertical hydraulic conductivity in three rivers of Nebraska. Geophysical Research Letters, 34(7). (2007)
Song, X., Chen, X., Zachara, J. M., Gomez-Velez, J. D., Shuai, P., Ren, H., & Hammond, G. E. Controls of River Dynamics on Residence Time and Biogeochemical Reactions of Hydrological Exchange Flows in A Regulated River Reach. (2019)
Storey, R. G., Howard, K. W., & Williams, D. D. Factors controlling riffle‐scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three‐dimensional groundwater flow model. Water Resources Research, 39(2). (2003)
Stubbington, R., Wood, P. J., & Reid, I. Spatial variability in the hyporheic zone refugium of temporary streams. Aquatic Sciences, 73(4), 499-511. (2011)
Tennant, D. L. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10. (1976)
Tonina, D., & Buffington, J. M. Hyporheic exchange in gravel bed rivers with pool‐riffle morphology: Laboratory experiments and three‐dimensional modeling. Water Resources Research, 43(1). (2007)
Tonina, D., & Buffington, J. M. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool‐riffle channels. Water Resources Research, 47(8). (2011)
Valett, H. M., Hakenkamp, C. C., & Boulton, A. J. Perspectives on the hyporheic zone: integrating hydrology and biology. Introduction. Journal of the North American Benthological Society, 12(1), 40-43. (1993)
Wörman, A., Packman, A. I., Marklund, L., Harvey, J. W., & Stone, S. H. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophysical Research Letters, 34(7). (2007)
White, D. S. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 12(1), 61-69. (1993)
Wondzell, S. M. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrological Processes: An International Journal, 20(2), 267-287. (2006)
Wondzell, S. M. The role of the hyporheic zone across stream networks. Hydrological Processes, 25(22), 3525-3532. (2011)
Wondzell, S. M., & Gooseff, M. N. 9.13 Geomorphic controls on hyporheic exchange across scales: Watersheds to particles. Treatise on geomorphology, 203-218. (2013)
Wood, P. J., Boulton, A., Little, S., & Stubbington, R. Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundamental and Applied Limnology/Archiv für Hydrobiologie, 176(4), 377-390. (2010)
Wooding, R. A. A hydraulic model for the catchment-stream problem: I. Kinematic-wave theory. Journal of Hydrology, 3(3-4), 254-267. (1965)
Wroblicky, G. J., Campana, M. E., Valett, H. M., & Dahm, C. N. Seasonal variation in surface‐subsurface water exchange and lateral hyporheic area of two stream‐aquifer systems. Water Resources Research, 34(3), 317-328. (1998)
李光敦. 水文學: 五南圖書出版股份有限公司. (2005)
李鎮宇. (2019). 基於功能特徵方法評估渠道化工程對魚類群落的影響. (碩士). 國立成功大學, 台南市. 取自 https://hdl.handle.net/11296/6778j7
林于玄. (2016). 應用微測壓管改良伏流水估算之水力傳導係數. (碩士). 國立成功大學, 台南市. 取自 https://hdl.handle.net/11296/76v597
郭俊廷. (2015). 伏流水與環境因子對底棲型鰕虎產卵之影響─以五溝水湧泉濕地為例. (碩士). 國立成功大學, 台南市. 取自 https://hdl.handle.net/11296/h539gz
游志弘&孫建平. 河道伏流水特性及其對地表逕流水質之影響. Journal of Taiwan Agricultural Engineering, Vol. 61, No. 2. (2015)
劉芷昂. (2019). 高屏溪流域伏流水開發之水資源評估. (碩士). 國立成功大學, 台南市. 取自 https://hdl.handle.net/11296/pw2n6m
鄭富尚. (2012). 動態規劃應用於旱季水田伏流水最佳化利用研究. (碩士). 國立屏東科技大學, 屏東縣. 取自 https://hdl.handle.net/11296/28mgyc


參考網址
http://gweb.wra.gov.tw/wrhygis/ebooks/ebook/ebook/hyb2018/1-%E7%AC%AC%E4%B8%80%E9%83%A8%E4%BB%BD-%E9%9B%A8%E9%87%8F/2018%E9%9B%A8%E9%87%8F.pdf

https://www.wra.gov.tw/media/16130/f-temp-attachment-74199112871.pdf
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-02-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw