進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1506201700025600
論文名稱(中文) 應用拓樸最佳化於連桿機構積層製造之支撐結構設計研究
論文名稱(英文) Studies on the Design of Support Structure by Topology Optimization for Additive Manufacturing for Bar Linkage
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 洪慈憶
研究生(英文) Tzu-Yi Hung
學號 n16044810
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 指導教授-李榮顯
口試委員-陳家豪
口試委員-蕭世文
中文關鍵字 積層製造  拓樸最佳化  支撐結構 
英文關鍵字 Additive manufacturing  Topology optimization  Support structure 
學科別分類
中文摘要 隨著傳統製造技術成熟許久,積層製造(Additive Manufacturing,AM)的出現,被視為技術的新里程碑,突破過去大眾所熟知的加工方式與思維。積層製造透過材料層層堆疊的方式完成加工,不再像過去只侷限於產品外觀進行製作,積層製造技術讓產品內部結構也能夠完整呈現。由於積層製造的特色是逐層堆疊材料,加工過程中,必須使用支撐結構為鏤空與懸空部分提供支撐。但支撐件結構的生成,不僅增加製作的時間,也增加材料的使用,因此支撐件結構的設計是積層製造的一個重要課題。
目前商用軟體,所生成之支撐件結構外觀普遍為格狀、片狀或是樹枝狀。格狀與片狀的支撐結構較為穩固,樹枝狀則較容易拆除;但是在製作過程中,前者使用大量材料,後者因為結構不穩,容易導致失敗。
本文導入拓樸最佳化於支撐件結構設計,將建立好的支撐件模型與成品合併後,結合商用軟體之切層路徑,決定負載之分布位置。接著將目標設定為體積最小化,並應用四元樹方法判斷支撐件結構的可製造性,以確保支撐件可以完成製作。
最後,透過真實案例做方法驗證,分別將商用軟體與本研究所提出之方法進行比較,從結果得知,藉由拓樸結構優化之成品,可節省12.6%的製作時間與60%的材料,證實本文方法可達到支撐件輕量化與節省製作時間。
英文摘要 As the traditional manufacturing technology was getting mature for a long time, the additive manufacturing (AM) is regarded as a milestone having the breakthrough of the manufacturing methods and the thinking. Characteristics of additive manufacturing is adding the material layer by layer that builds product not only the external but also the internal structure. Due to the characteristics of additive manufacturing process, it has to provide the structure for supporting the hollow or overhang of the model. The use of support structure increases the material usage, the printing time, and the post-fabrication treatments. Therefore, it is important for designing the support structure of additive manufacturing.
The types of the support structure of the commercial software are usually grid, line or tree shape. The types of the grid and line are stable, and the tree can be moved easily. But in the process, the former use lots of material, and latter is too weak to construct well.
In this study, the additive manufacturing of support structure and the topology optimization were integrated. First, the support structure and the model to be prepared were combined. Then, along the slice path of the commercial software the locations where the load will be put were determined, and the feasibility for support structure was evaluated with Quad-tree to make sure that it can be made successfully. Finally, the proposed topology optimization approach was tested compared with the commercial software. From the tested results, the proposed method reduced the printing time by 12.6% and also reduced the amount of material by 60%.
論文目次 摘要 I
ABSTRACT II
致謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 研究流程 5
1.4 全文架構 6
第二章 文獻回顧 8
2.1 積層製造(Additive Manufacturing, AM) 8
2.1.1 熔融擠製成形(Fused Deposition Modelling, FDM) 9
2.2 拓樸最佳化(Topology Optimization) 9
2.3 支撐件(Support Structure) 11
第三章 連桿機構可製造性評估 15
3.1 旋轉對機構評估標準件 16
3.1.1 幾何探討 16
3.1.2 旋轉對接頭探討 19
3.2 製程評估標準件設計 21
3.3 實驗設計方法 27
3.3.1田口方法 28
3.3.2灰局勢決策 30
3.3.3灰預測 32
3.4 旋轉對一體成形評估 36
3.4.1 旋轉對分類與誤差 37
3.4.2 製程可行性評估 39
3.5 擺放方向評估系統 40
3.5.1 幾何特徵擷取 40
3.5.2 體積誤差計算 42
第四章 支撐件設計方法 43
4.1 開源切層軟體 - Cura 43
4.1.1 Cura支撐演算方法 44
4.2 支撐件結構設計方法流程規劃 46
4.2.1 拓樸最佳化演算方法 47
4.2.2 支撐件設計法則 49
4.2.3 荷重決定 51
4.2.4 四元樹方法 52
第五章 結果與討論 55
5.1 實驗機器與設備選定 55
5.2 最佳製程參數決定 56
5.2.1 誤差資料之JSON檔案建立 65
5.3支撐件拓樸優化實例驗證 67
5.4 結果與討論 82
5.4.1 結果 82
5.4.2 討論 83
第六章 結論與建議 85
6.1 結論 85
6.2 建議 85
參考文獻 87
參考文獻 Christopher Barnatt, "3D Printing - The Next Industrial Revolution,Createspace Independent Pub,England." (2013)
Cacace Simone, et al., "A level set based method for fixing overhangs in 3D printing." Applied Mathematical Modelling 44:446-455, (2014)
D.Brackett, et al., "Topology Optimization for Additive Manufacturing." 24th Solid Freeform Fabrication Symposium, Austin, TX:348-362, (2011)
F. Calignano, "Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting." Materials and Design 64:203-213, (2014)
Flaviana Calignano, et al., "Overview on Additive Manufacturing Technologies." Institute of Electrical and Electronics Engineers 105(4):593-612, (2017)
Gary J. Sullivan and Richard L. Baker, "Efficient Quadtree Coding of Images and Video " IEEE Transactions on Image Processing 3(3):327-331, (1994)
Hod.Lipson and Melba.Kurman, "Fabricated:The New World of 3D Printing,Wiley." (2013)
H. D. Morgan, et al., "Part orientation optimisation for the additive layer manufacture of metal components." The International Journal of Advanced Manufacturing Technology 86:1679-1687, (2016)
Jérémie Dumas, et al., "Bridging the gap: automated steady scaffoldings for 3D printing." ACM Transactions on Graphics (TOG) 33(4):98, (2014)
J. Vanek, et al., "Clever Support: Efficient Support Structure Generation for Digital Fabrication." Computer Graphics Forum 33(5):117-125, (2014)
Jiankang Qiu, et al., "A novel supporting structure generation scheme to 3D printing." ACM Transactions on Graphics (TOG):1-4, (2015)
Kumar Chalasani, et al., "Support Generation for Fused Deposition Modeling." Solid Freeform Fabrication Symposium:229-241, (1995)
Kai Zeng, "Doctoral Dissertation, University of Louisville, Louisville, KY, USA." (2015)
Kaufui V.Wong and Aldo Hernandez, "A Review of Additive Manufacturing." ISRN Mechanical Engineering 2012:1-10, (2012)
Luo Nan and Wang Quan, "Fast slicing orientation determining and optimizing algorithm for least volumetric error in rapid prototyping." The International Journal of Advanced Manufacturing Technology 83(5-8):1297-1313, (2015)
Loughborough University Web site, " http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/."[Accessed: 20 April,2017]
Nicolas Gardan and Alexandre Schneider, "Topological optimization of internal patterns and support in additive manufacturing." Journal of Manufacturing Systems 37:417-425, (2015)
Shawn Moylan, et al., "Proposal for a standardized test artifact for additive manufacturing machines and processes." 23rd Annual International Solid Freeform Fabrication Symposium, Austin, TX:902-920, (2012)
Vijay B. Nidagundi, et al., "Studies on Parametric Optimization for Fused Deposition Modelling Process." Materials Today: Proceedings 2(4-5):1691-1699, (2015)
Xiangwei Zhang and Lili Huang, "Automatic Recognition of Features from CAD Models for Mesh Generation." Computer Aided Design 46(1), (2008)
王士玮 陈岩, 杨周旺,刘利刚, "FDM三維打印的支撐結構的設計算法,中國科學:信息科學." (2015)
李輝煌, "田口方法:品質設計的原理與實務,高立圖書有限公司,台南." (2011)
林柏志, "以積層製造旋轉對連桿一體成形之擺放方向研究,國立成功大學機械工程學系碩士論文." (2016)
洪清泉, et al., "OptiStruct&HyperStudy理论基础与工程应用,機械工業出版社,中國." (2013)
黃景祺, "灰差分預測控制器之及應用,國立臺灣師範大學工業教育學系碩士論文." (2000)
鄧聚龍, "灰理论基础,華中科技大學出版社." (2002)
潘敬華, "https://read01.com/dEJz67.html." (2015), [Accessed: 2 May,2017]
賴羿壬, "積層製造可行性評估方法於連桿機構一體成形之研究,國立成功大學機械工程學系碩士論文." (2015)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw