進階搜尋


下載電子全文  
系統識別號 U0026-1506201222471500
論文名稱(中文) 研究鐵酸鉍經由摻雜後的晶格與磁性結構 --- 塊材,奈米顆粒與薄膜
論文名稱(英文) The crystalline and spin structure of doped Bismuth Ferrite --- Bulk, nanoparticle and film
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 100
學期 2
出版年 101
研究生(中文) 林哲緯
研究生(英文) Je-Wei Lin
學號 L28951089
學位類別 博士
語文別 英文
論文頁數 111頁
口試委員 指導教授-呂欽山
共同指導教授-林昭吟
召集委員-黃榮俊
口試委員-陳宜君
口試委員-朱明文
中文關鍵字 多鐵材料  鉍鐵氧 
英文關鍵字 multiferroic material  bismuth ferrite 
學科別分類
中文摘要 在這篇論文中,我們研究多鐵性鉍鐵氧摻鏑的材料,包括塊材,奈米顆粒,薄膜樣品,進而了解晶格結構與磁自旋結構的關係。其中,晶格結構與磁自旋結構是利用X射線衍射(XRD),磁性量測,掃描電子顯微鏡譜圖(SEM),電子自旋共振(ESR),和中子粉末衍射(NPD)來做研究。
鉍鏑鐵氧Bi1−xDyxFeO3塊材樣品之晶體結構在x=0~0.05,可以根據XRD圖譜對應到空間群組為斜菱方晶系R3c。在x=0.30及0.40的樣品,其晶體結構會轉變到空間群組為正交晶系Pbnm。鉍鏑鐵氧的弱磁性是通過電子自旋共振(ESR),用X-波段(9.53 GHz)在不同溫度下被研究。純鉍鐵氧的g因子是2.0,源於螺旋擺線自旋結構;當摻雜的鏑超過0.10時,其ESR譜圖顯示不同於另一種相的g因子約為1,這是由於另一個均勻磁化狀態所貢獻。於變溫的電子自旋共振實驗以及變溫中子實驗中,進而得知在140及200 K下具有自旋重新排列的行為。
對於鉍鏑鐵氧Bi1−xDyxFeO3的奈米顆粒,顯然摻雜鏑是可抑制晶粒尺寸或材料界面,且表面效應在奈米顆粒發揮重要作用。摻雜濃度和顆粒的直徑成反比,因此磁各向異性常數Keff不會違反磁向異性模型,但x=0.4的磁滯曲線之磁化量的增加並非線性。由於臨界尺寸dc與磁各向異性常數及交換常數相關。因此,當它的大小是比螺旋擺線自旋結構波長小時,會促使交換常數會變大。奈米顆粒的ESR光譜觀察到的共振場(或g因子)與塊材樣品的共振場不同。而奈米顆粒顯示從表面來的弱鐵磁行為,且交換常數是不同於反鐵磁塊材樣品。
在鉍鐵氧薄膜的ESR譜中觀察到不同共振磁場(Hr) 的六條譜線。因為其Hr的值會和自旋波指數n的平方成線性關係,所以有五條譜線為平行平面的自旋波共振譜線。不過,在n=5的自旋波共振譜線是發生溫度於110 K,但未被定義的一條譜線發生在110 K及170 K的溫度,這些發生共振譜線的溫度已被認定為Fe3+的磁矩的自旋重新排列的溫度。
英文摘要 In the dissertation, we investigate the mutiferroic bismuth ferrites Bi1−xDyxFeO3 in various forms, including bulk, nanoparticle, and thin film in order to understand the general relation between crystal structure and spin structure. In particular, the crystalline and spin structures are studied with X-ray powder diffraction (XRD), magnetization, scanning electron microscope (SEM) images, electron spin resonance (ESR), and neutron powder diffraction (NPD).
The crystal structure for the bulk samples of bismuth ferrites Bi1−xDyxFeO3 with x = 0 ~ 0.05 are indexed based on the rhombohedral space group R3c in the XRD patterns. With x = 0.30 and 0.40, the structure further transforms to the orthorhombic group Pbnm. Weak magnetism of Bi1−xDyxFeO3 is studied via the electron spin resonance (ESR) of X-band (9.53 GHz) at various temperatures. The g-factor of pure BiFeO3 is 2.0, which originates from its cycloidal spin structure; while for the doped Bi1−xDyxFeO3 samples with x > 0.10, ESR spectra reveal a second phase with a different g-factor around 1, which is attributed to the homogeneous magnetized phase of Bi1−xDyxFeO3. Temperature dependent of ESR and neutron data further suggest a spin-reorientation at 140 and 200 K.
For nanoparticles of Bi1−xDyxFeO3, it is evidential that Dy-doping can lead to suppression of grain size, and the diameter of particle d plays an important role in nanoparticles. The linearity between magnetization and 1/d indicates that the magnetic anisotropy constant Keff does not violate the magnetic anisotropy model. The data shows a great increase of magnetization M without following the linearity in M vs. 1/d at x = 0.4. There exists a critical size dc correlated with magnetic anisotropy constant and exchange constant. When dc is smaller than the cycloid spin wavelength (62 nm), the exchange constant in nanoparticle is enhanced. The ESR spectra of nanoparticles are observed and the resonance field (or g-factors) is different from that of bulk samples.
In the ESR spectra of BiFeO3 thin film, there are six sharp lines observed for different resonance field (Hr). These lines are assigned to the five in-plane spin wave (SW) resonances, because the values of Hr have a linear relation with the square of spin wave index n. However, the in-plane mode of n = 5 only appears at 110 K. An unknown mode appears at temperatures of 110 K and 170 K which may be related to the spin reorientation temperatures of Fe3+ magnetic moment.
論文目次 Abstract 3
Acknowledgements 7
Figures 9
Equations 12
Tables 14
Chapter 1 - Introduction 15
Chapter 2 - Literature Review 22
2.1 Crystal structure of BFO 22
2.2 Electrical charge properties 23
2.3 Magnetic and magnetoelectric properties 25
2.4 Spin reorientation 30
2.5 Spin waves 34
Chapter 3 - Synthesis and analytic techniques 45
3.1 Solid state reaction method 45
3.2 Sol-gel method 47
3.3 Pulsed Laser Deposition method 50
3.4 X-ray diffraction spectroscopy (XRD) 53
3.5 Scanning electron microscopy image (SEM) 54
3.6 Electron spin resonance spectroscopy 56
3.7 Neutron powder diffraction spectroscopy (NPD) 58
Chapter 4 - Results and discussions 68
4.1 BD(x)FO bulks 68
4.2 BD(x)FO nanoparticles 74
4.3 BFO thin film 79
Chapter 5 - Conclusion 105
Reference 106
Publication List 111

參考文獻 1 K. Aizu, Physical Review B 2, 754 (1970).
2 H. Schmid, Ferroelectrics 162, 317-338 (1994).
3 M. Fiebig, B. B. Van Aken, J. P. Rivera, and H. Schmid, Nature 449, 702-705 (2007).
4 H. Bea, M. Gajek, M. Bibes, and A. Barthelemy, J Phys-Condens Mat 20 (2008).
5 N. D. M. W. Eerenstein, and J. F. Scott, Nature 442, 759-765 (2006).
6 I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959).
7 D. N. Astrov, Sov. Phys. JETP 11, 708 (1959).
8 a. I. E. C. G. A. Smolenskii, Sov. Phys. Usp. 25, 475 (1982).
9 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55-58 (2003).
10 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719-1722 (2003).
11 P. Royen and K. Swars, Angew Chem Int Edit 69, 779-779 (1957).
12 J. M. Moreau, C. Michel, R. Gerson, and W. J. James, J Phys Chem Solids 32, 1315-& (1971).
13 O. R. P. KISELEV S. V., and ZHDANOV G. S.,, Soviet Phys. Dokl. 7, 742 (1963).
14 J. R. Teague, R. Gerson, and W. J. James, Solid State Commun 8, 1073-& (1970).
15 I. Sosnowska, T. Peterlinneumaier, and E. Steichele, J Phys C Solid State 15, 4835-4846 (1982).
16 G. Catalan and J. F. Scott, Adv Mater 21, 2463-2485 (2009).
17 D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, Physical Review B 76 (2007).
18 D. Lebeugle, D. Colson, A. Forget, and M. Viret, Appl Phys Lett 91 (2007).
19 R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle, and D. Colson, Physical Review B 76 (2007).
20 M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Appl Phys Lett 91 (2007).
21 V. V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel, Appl Phys Lett 90 (2007).
22 P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, and O. Eriksson, Physical Review B 74 (2006).
23 C. Ederer and N. A. Spaldin, Phys Rev Lett 95 (2005).
24 J. R. Cheng, N. Li, and L. E. Cross, J Appl Phys 94, 5153-5157 (2003).
25 B. F. Yu, M. Y. Li, J. Liu, D. Y. Guo, L. Pei, and X. Z. Zhao, J Phys D Appl Phys 41 (2008).
26 F. Z. Huang, X. M. Lu, W. W. Lin, X. M. Wu, Y. Kan, and J. S. Zhu, Appl Phys Lett 89 (2006).
27 J. Liu, M. Y. Li, L. Pei, B. F. Yu, D. Y. Guo, and X. Z. Zhao, J Phys D Appl Phys 42 (2009).
28 G. L. Yuan and S. W. Or, J Appl Phys 100 (2006).
29 Y. Wang and C. W. Nan, J Appl Phys 103 (2008).
30 A. Lahmar, S. Habouti, M. Dietze, C. H. Solterbeck, and M. Es-Souni, Appl Phys Lett 94 (2009).
31 J. W. Lin, Y. H. Tang, C. S. Lue, and J. G. Lin, Appl Phys Lett 96, 232507 (2010).
32 P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V. M. Naik, M. B. Sahana, C. Sudakar, R. Naik, M. S. R. Rao, and G. Lawes, J Phys-Condens Mat 21 (2009).
33 H. Naganuma, J. Miura, and S. Okamura, Appl Phys Lett 93 (2008).
34 Y. Wang and C. W. Nan, Ferroelectrics 357, 736-+ (2007).
35 Z. V. Gabbasova, M. D. Kuzmin, A. K. Zvezdin, I. S. Dubenko, V. A. Murashov, D. N. Rakov, and I. B. Krynetsky, Phys Lett A 158, 491-498 (1991).
36 C. Michel, J. M. Moreau, Achenbac.Gd, R. Gerson, and W. J. James, Solid State Commun 7, 701-& (1969).
37 A. Palewicz, R. Przenioslo, I. Sosnowska, and A. W. Hewat, Acta Crystallogr B 63, 537-544 (2007).
38 F. Kubel and H. Schmid, Acta Crystallogr B 46, 698-702 (1990).
39 R. D. Shannon, Acta Crystallogr A 32, 751-767 (1976).
40 C. Li, K. C. K. Soh, and P. Wu, J Alloy Compd 372, 40-48 (2004).
41 R. Ramesh, Nature 461, 1218-1219 (2009).
42 S. I, M. Loewenhaupt, W. I. F. David, and R. M. Ibberson, Physica B-Condensed Matter 180, 117-118 (1992).
43 A. V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, Jetp Lett+ 71, 465-468 (2000).
44 A. V. Zalessky, A. A. Frolov, T. A. Khimich, A. A. Bush, V. S. Pokatilov, and A. K. Zvezdin, Europhys Lett 50, 547-551 (2000).
45 A. M. Kadomtseva, A. K. Zvezdin, Y. F. Popov, A. P. Pyatakov, and G. P. Vorob'ev, Jetp Lett+ 79, 571-581 (2004).
46 Y. F. Popov, A. M. Kadomtseva, S. S. Krotov, D. V. Belov, G. P. Vorob'ev, P. N. Makhov, and A. K. Zvezdin, Low Temp Phys+ 27, 478-479 (2001).
47 Y. F. Popov, A. K. Zvezdin, G. P. Vorobev, A. M. Kadomtseva, V. A. Murashev, and D. N. Rakov, Jetp Lett+ 57, 69-73 (1993).
48 B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Physical Review B 69 (2004).
49 R. Przenioslo, A. Palewicz, M. Regulski, I. Sosnowska, R. M. Ibberson, and K. S. Knight, J Phys-Condens Mat 18, 2069-2075 (2006).
50 I. Sosnowska and A. K. Zvezdin, J Magn Magn Mater 140, 167-168 (1995).
51 H. Forestier and G. Guit-Guillain, Compt. Rend. 230, 1844 (1950).
52 R. M. Bozorth, H. J. Williams, and D. E. Walsh, Phys. Rev. 103, 572 (1956).
53 R. M. Bozorth, V. Kramer, and J. P. Remeika, Phys. Rev. Letters 1, 3 (1958).
54 S. Geller and E. A. Wood, Acta Cryst. 9 (1956).
55 S. Geller, J. Chem. Phys. 24 (1956).
56 D. Treves, Phys. Rev. 125 (1962).
57 D. Treves, J. Appl. Phys. 36 (1965).
58 G. Gorodetsky and D. Treves, Proc. Intern. Conf. Magnetism, Nottingham, 606 (1964).
59 M. Eibschütz, Acta Cryst 19 (1965).
60 W. C. Koehler and E. O. Wollan, J. Phys. Chem. Solids 2, 100 (1957).
61 W. C. Koehler, E. O. Wollan, and M. K. Wilkinson, Phys. Rev. 118, 58 (1960).
62 W. P. WOLF, J Appl Phys 40, 1061-1069 (1969).
63 M. K. Singh, R. S. Katiyar, and J. F. Scott, J. Phys.: Condens. Matter 20, 252203 (2008).
64 H. Katsura, A. V. Balatsky, and N. Nagaosa, Phys Rev Lett 98 (2007).
65 J. F. Scott, M. K. Singh, and R. S. Katiyar, J. Phys.: Condens. Matter 20, 322203 (2008).
66 J. F. Scott, M. K. Singh, and R. S. Katiyar, J. Phys.: Condens. Matter 20, 425223 (2008).
67 S. A. T. Redfern, C. Wang, J. W. Hong, G. Catalan, and J. F. Scott, J. Phys.: Condens. Matter 20, 452205 (2008).
68 P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, R. P. S. M. Lobo, D. Lebeugle, and D. Colson, PHYSICAL REVIEW B 79, 180411 (2009).
69 R. de Sousa and J. E. Moore, Physical Review B 77 (2008).
70 M. Cazayous, Y. Gallais, A. Sacuto, R. de Sousa, D. Lebeugle, and D. Colson, Phys Rev Lett 101, 037601 (2008).
71 V. V. Laguta, I. P. Bykov, L. P. Yurchenko, R. Blinc, S. Wohlrab, G. Suchaneck, and S. Kaskel, Ferroelectrics 370, 153-155 (2008).
72 D. Talbayev, S. A. Trugman, S. Lee, H. T. Yi, S. W. Cheong, and A. J. Taylor, Physical Review B 83 (2011).
73 J. T. Davis, Rideal, E. K., Interfacial Phenomena 1, 480 (1963).
74 J. K. West, R. Nikles, and G. LaTorre, Better Ceramics Through Chemistry III 3, 219 (1988).
75 M. J. R. Wilson, Drying Kinetics of Pure Silica Xerogels. Masters Theses, 198 (1989).
76 L. L. Hench and M. J. R. Wilson, J Non-Cryst Solids 121, 234-243 (1990).
77 M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science 266, 1540-1542 (1994).
78 T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima, and H. Koinuma, Appl Phys Lett 85, 272-274 (2004).
79 J. M. Cowley, Diffraction physics, 1975).
80 F. Z. Qian, J. S. Jiang, S. Z. Guo, D. M. Jiang, and W. G. Zhang, J Appl Phys 106, 084312 (2009).
81 M. Knoll, Zeitschrift für technische Physik 16, 467 (1935).
82 M. von Ardenne, Zeitschrift für Physik 109, 553-572 (1939).
83 M. von Ardenne, Zeitschrift für technische Physik 19, 407-416 (1938).
84 D. R. T. Weber, D. J. Jiang, and D. D. P. Barr, edited by I. Bruker Instruments, 1998).
85 ansto_Web_site, (ansto, 2012).
86 X. Liu and J. K. Furdyna, J. Phys.: Condens. Matter 18, R245–R279 (2006).
87 D. Maurya, H. Thota, A. Garg, B. Pandey, P. Chand, and H. C. Verma, J Phys-Condens Mat 21 (2009).
88 B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, Phys Rev B 69, 064114 (2004).
89 M. K. Singh, R. S. Katiyar, and J. F. Scott, J Phys-Condens Mat 20, 252203 (2008).
90 A. Palewicz, T. Szumiata, R. Przenioslo, I. Sosnowska, and I. Margiolaki, Solid State Commun 140, 359-363 (2006).
91 J. M. Moreau, C. Michel, R. Gerson, and W. J. James, Acta Crystall B-Stru B 26, 1425-& (1970).
92 J. Herrero-Albillos, G. Catalan, J. A. Rodriguez-Velamazan, M. Viret, D. Colson, and J. F. Scott, J Phys-Condens Mat 22 (2010).
93 D. Senff, N. Aliouane, D. N. Argyriou, A. Hiess, L. P. Regnault, P. Link, K. Hradil, Y. Sidis, and M. Braden, J Phys-Condens Mat 20 (2008).
94 S. X. Zhang, W. J. Luo, D. L. Wang, and Y. W. Ma, Mater Lett 63, 1820-1822 (2009).
95 F. Bodker, S. Morup, and S. Linderoth, Phys Rev Lett 72, 282-285 (1994).
96 A. H. Lu, E. L. Salabas, and F. Schuth, Angew Chem Int Edit 46, 1222-1244 (2007).
97 T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett 7, 766-772 (2007).
98 P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M. A. Measson, D. Colson, A. Forget, M. Bibes, A. Barthelemy, and M. Cazayous, Nat Mater 9, 975-979 (2010).
99 S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, J Appl Phys 101, 034104 (2007).
100 M. H. Seavey and P. E. Tannenwald, Phys Rev Lett 1, 168-169 (1958).
101 M. H. Seavey and P. E. Tannenwald, J Appl Phys 29, 292-293 (1958).


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw