進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1505202017325500
論文名稱(中文) 不同翼弦長之微型風機之發電效率與尾流特性分析
論文名稱(英文) An experimental investigation of power generation efficiency and wake characteristics on a miniature wind turbine with different chord lengths
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 戴晏夫
研究生(英文) Yan-Fu Dai
學號 N96071384
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 指導教授-吳毓庭
口試委員-林傳堯
口試委員-林昭安
口試委員-朱佳仁
口試委員-李約亨
中文關鍵字 葉片元素動量理論  風機尾流  風洞量測  眼鏡蛇探針風速計  疏密比  性能係數  發電效率  能量頻譜圖  翼弦長  扭轉角 
英文關鍵字 Blade element momentum theory  Turbine wake  Wind tunnel measurement  Cobra probe anemometer  Solidity  Power coefficient  power generation efficiency  Spectrum  chord length  twist angle 
學科別分類
中文摘要 本實驗之研究目的為探討風機葉片之疏密比對發電量以及尾流特性之影響。實驗進行在一個開放式風洞之中而我們在其內部設置了一個微型風力發電機。風機模型包含一個三葉風機葉片以及三個不同疏密比之二葉風機葉片。我們使用量測儀器包含眼鏡蛇探針風速計及雷射轉速計進行實驗量測。在本實驗中,量測數據包括瞬時風速資料、發電機電壓值及風機葉片轉速。再將量測結果進一步分析比較功率輸出、性能係數、以及使用不同風機葉片所量測到之風機尾流特性。本實驗採用迴路電阻值分別為10、20、40、60歐姆的情況之量測。我們建立了入流風速和轉速之對應關係,接著我們透過計算再建立了轉速與性能係數之關係。由上述結果可以得知電阻值為20歐姆與入流條件為6 m s-1時,使用3B-S100葉片量測之性能係數最大值為0.208。而由輸出功與轉速之關係圖我們可得知。當使用同一種電阻進行測量時,即使測量中使用的是不同弦長的風機葉片,輸出功與轉速會呈現同樣的趨勢。而不同迴路電阻的情況下,輸出功與轉速之分布曲線之間會有明顯的差異。因此我們藉由實驗資料所計算之扭矩常數,也推導了輸出功與電阻值以及轉速之關係式。在尾流量測的部分,我們設置了展向方向共57個點進行量測。此外我們探討了葉片在入流方向X/D = 1D、3D、5D的位置之近尾流特性(包含入流速度、紊流強度、以動量通量)。我們可以發現使用3B-S100葉片所量測之紊流強度明顯比2B-S100以及2B-S83葉片低,在實際風場中,我們往往也會考慮上游以及下游風機之間的交互作用。較低的紊流強度意味著上游風機之尾流給下游風機的負擔也較低,這也是實際風場之風機採用三葉片轉子的原因之一。最後的部分我們取用了入流風速以及風機葉尖位置後量測點之風速資料進行了頻譜分析。我們可以發現,在此轉速下之能量頻譜圖皆會有峰值的出現。最大的原因為葉片受力不均。
英文摘要 The object of this study carried out a wind-tunnel experiment to explore the effect of turbine blade solidity on power generation and wake characteristics. The experiment was carried out in a wind tunnel, and we set up a miniature wind turbine inside. The turbine model involved a three-blade rotor and three two-blade rotors with different solidity. Instruments adopted here include the Cobra Probe anemometer and the laser tachometer for measurements. In the experiment, the measured data include the voltage value of the turbine generator and the rotating speed of the blades. And we compared the results of measurements, including the power output, power coefficient, and the characteristics of the turbine wake by using different blades. Experiments have been performed to measure the electrical circuit resistance values of 10, 20, 40, and 60 ohms. We established the corresponding relationship between the inflow wind speed and the rotational speed, and then we established the relationship between the rotational speed and the coefficient of performance through calculation. From the above results, it can be known that when the resistance value is 20 ohms and the inflow condition is 6 m s-1, the maximum value of the power coefficient is 0.208 with the 3B-S100 wind turbine blade. We can know from the relationship between output work and speed. When using the same resistance for measurement, even if fan blades with different chord lengths are used in the measurement, the output power and speed will show the same trend. In the case of different loop resistances, there will be a significant difference between the distribution curve of output power and speed. Therefore, we calculated torque constant by the measured data that we can derive the relation of power output, the value of resistance, and the rotation speed. We set up 57 sampling points along the spanwise direction in the measurement. Besides, we investigate the near wake characteristics included the averaged streamwise velocity, turbulence intensity, and momentum flux on the streamwise location of X/D = 1, 3, and 5. We found that the turbulence intensity measured with the 3B-S100 blade is lower than the turbulence intensity measured with the 2B-S100 and 2B-S83 blades. In the real wind farm, we usually consider the interaction between the upstream turbine and downstream turbine. The lower turbulence intensity means the downstream turbine has less fatigue loading caused by the wake of the upstream turbine. That is also one of the reasons why the wind turbines in a real wind farm adopt the 3-blade rotor. Finally, we used the velocity data of inflow and the wind data of the sampling point behind the blade tip to perform the spectrum analysis. We can see that there are several peaks exist in the distribution of the power spectrum. The main reason is that the force on each blade is non-uniform.
論文目次 中文摘要 I
ABSTRACT III
ACKNOWLEDGMENTS V
CONTENTS VI
LIST OF TABLES VIII
LIST OF FIGURES IX
NOMENCLATURE XII
CHAPTER 1 Introduction 1
CHAPTER 2 Experimental setup 5
2-1 Open-type wind tunnel 6
2-2 Miniature wind turbine model 9
2-3 Cobra probe 14
2-4 Laser tachometer 17
2-5 Traversing system 18
2-6 Data acquisition 19
2-7 Resistance box 20
2-8 Experimental details 21
CHAPTER 3 Theory and analysis method 24
3-1 Momentum Theory 24
3-2 Blade Element Theory 25
3-3 Blade Element Momentum Theory 27
3-4 Analysis of the power performance of the motor 28
CHAPTER 4 Results and discussions 30
4-1 Comparison of the measured power output 31
4-2 Time-averaged wind velocity 38
4-3 Turbulence intensity and turbulence kinetic energy 42
4-4 Momentum flux 46
4-5 Power spectrum 50
CHAPTER 5 Conclusions 56
References 58
參考文獻 1. Ohlenforst, K., S. Sawyer, A. Dutton, B. Backwell, R. Fiestas, J. Lee, L. Qiao, F. Zhao, and N. Balachandran, Global wind report 2018. Global Wind Energy Council, Brussels, Belgium, Tech. Rep, 2019.
2. Iungo, G.V., Experimental characterization of wind turbine wakes: Wind tunnel tests and wind LiDAR measurements. Journal of Wind Engineering and Industrial Aerodynamics, 2016. 149: p. 35-39.
3. Wang, Z., A. Ozbay, W. Tian, and H. Hu, An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine. Energy, 2018. 147: p. 94-109.
4. Mourad, M.G., S. Ayad, and O.E. Abd Elatif. An Experimental Study of the Near Wake of Horizontal Axis Wind Turbines. in 13th International Energy Conversion Engineering Conference. 2015.
5. Dou, B., M. Guala, L. Lei, and P. Zeng, Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel. Energy, 2019. 166: p. 819-833.
6. Chamorro, L.P., R. Arndt, and F. Sotiropoulos, Reynolds number dependence of turbulence statistics in the wake of wind turbines. Wind Energy, 2012. 15(5): p. 733-742.
7. Wu, Y.-T., C.-Y. Lin, and C.-M. Hsu, An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios. Energies, 2020. 13(8): p. 2113.
8. Duquette, M.M. and K.D. Visser, Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines. J. Sol. Energy Eng., 2003. 125(4): p. 425-432.
9. Li, S. and Y. Li. Numerical study on the performance effect of solidity on the straight-bladed vertical axis wind turbine. in 2010 Asia-Pacific power and energy engineering conference. 2010. IEEE.
10. Wenehenubun, F., A. Saputra, and H. Sutanto, An experimental study on the performance of Savonius wind turbines related with the number of blades. Energy procedia, 2015. 68: p. 297-304.
11. Bottasso, C.L., F. Campagnolo, and V. Petrović, Wind tunnel testing of scaled wind turbine models: Beyond aerodynamics. Journal of wind engineering and industrial aerodynamics, 2014. 127: p. 11-28.
12. DELTA, Delta_VFD-S. 2016.
13. Wu, Y.-T. and F. Porté-Agel, Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-layer meteorology, 2011. 138(3): p. 345-366.
14. Manwell, J.F., J.G. McGowan, and A.L. Rogers, Wind energy explained: theory, design and application. 2010: John Wiley & Sons.
15. Phrozen, Phrozen Shuffle. 2018.
16. motor, m.D., Motor-DCX-12 L Precious Metal Brushes. 2018: p. 1.
17. Ltd, T.F.I.P., Getting Started Series 100 Cobra Probe. 2015: p. 1-6.
18. Ltd, T.F.I.P., Getting Started - Ref Sensor Module. 2011.
19. INSTRUMENT, M., Remote Optical Laser Sensor ROLS24-W. 2007: p. 1-2.
20. INSTRUMENTS, N., NI cDAQ-9174. 2013.
21. Bastankhah, M. and F. Porté-Agel, Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region. Physics of Fluids, 2017. 29(6): p. 065105.
22. Pope, S.B., Turbulent flows. 2001, IOP Publishing.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw