進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1504201808181400
論文名稱(中文) 在大鼠坐骨神經上建立可重複性的慢性狹窄損傷: 探討結構改變和功能喪失
論文名稱(英文) To establish reproducible chronic constriction injury in rat sciatic nerve: conformational changes and functional loss
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所碩士在職專班
系所名稱(英) Institute of Clinical Medicine(on the job class)
學年度 106
學期 2
出版年 107
研究生(中文) 陳思翰
研究生(英文) Szu-Han Chen
學號 S97041093
學位類別 碩士
語文別 英文
論文頁數 31頁
口試委員 指導教授-吳佳慶
指導教授-薛元毓
口試委員-沈延盛
口試委員-林聖哲
中文關鍵字 壓迫性神經病變  周邊神經受損  慢性狹窄損傷  坐骨神經  動物模組 
英文關鍵字 Compressive neuropathy  Peripheral nerve injury  Chronic constriction injury  Sciatic nerve  Animal model 
學科別分類
中文摘要 用神經減壓手術是目前針對壓迫性神經病變治療的標準方式,而且大多數病人對於症狀舒解都很滿意。然而手術後仍然有產生新的、仍舊殘留著、或是復發的壓迫性神經病變所引發的神經性疼痛。外來機械性的壓迫的嚴重程度對於周邊神經病變占很重要的一個角色。但是我們回顧以前的文獻發現,並沒有一個好的壓迫性周邊神經病變的動物模型,在外來機械性壓迫的控制上沒有再現性的結果。所以我們試圖去建立一個新的動物模型可以控制的外來機械性壓迫在大鼠的坐骨神經上,營造再現性的壓迫性周邊神經病變。
我們首先在動物身上建立一個新的壓迫性神經病變的動物模式可以去控制外來機械性壓迫,經由動物本身的行為表現對於腳掌刺激產生疼痛而收縮的反應做統計學上的分析。另外我們也把動物的小腿肌肉以及坐骨神經取下來做組織學上的分析看肌肉萎縮的情況,看神經退化的情形。我們也把受傷側的週邊神經進行進一步的免疫組織學染色,去觀察比較神經產生發炎反應或是週邊血管破壞的狀況。然而,我們在新的周邊神經壓迫性病變動物設計中可以明確地觀察到受傷腳經實驗後的行為變化包括感覺異常及腿部肌肉有萎縮的情形。如果我們把壓迫在神經上的力量更強的話,其老鼠的神經退化和肌肉萎縮的情況會更加嚴重。這樣新的壓迫性神經病變實驗後的動物行為表現和我們在臨床上有壓迫性神經病變的病人非常相似。在組織學上的觀察,我們也同時觀察到從外在力量壓迫神經的力量和其神經退化以及引發周邊神經發炎的情況成正比例關係。
未來,我們希望可以藉由這樣新的動物模組去找到更有效且副作用更小的治療方法。
英文摘要 Surgical nerve decompression for compressive neuropathy is the gold standard procedure and most patients have satisfied outcomes for symptom relief. However, the patients still suffered from neuropathic pain resulting from new, residual or recurrent compression neuropathy after surgeries. The severity of mechanical compression plays an important role for peripheral neuropathy. By reviewing previous animal models published for compressive neuropathy, there were no reproducible results in terms of tension-controlled. Therefore, we established a modified animal model of tension-controlled compressive neuropathy in rat sciatic nerve in order to analyze resultant functional outcomes.
We established a modified animal model for compressive neuropathy under different tension stretch and then evaluate the behavioral function of injured sciatic nerve. The muscle atrophy and nerve degeneration were measured by histological assessments. We would also survey the neuro-inflammation and vascular disturbance in the regenerated nerve by using immunohistochemical (IHC) staining.
We observed peripheral compressive neuropathy made behavior exchanged on the affected leg of rat including sensory dysfunction and muscle atrophy. If the mechanical force compressed stronger, nerve degeneration and muscle weakness made more severe. Those behavior results in the new animal model of peripheral compressive neuropathy were similar to clinical findings in humans. In the histological findings, we also found the mechanical compression proportional to nerve degeneration and neuroinflammation.
In the future, we will confirm the new mechanism-based treatment by surgery or medication on the animal model to provide more efficient outcomes with lower side effect.
論文目次 中文摘要 I
English Abstract II-III
Acknowledgement IV
Table of Contents V-VI
List of figures VII
Abbreviations VIII
Introduction 1
1.Compressive neuropathy of upper extremity 1
2.Surgical and medical treatment for recurrent compressive neuropathy 2
3.Pathogenesis of recurrent compressive neuropathy 4
4.Animal models of peripheral neuropathy 5
Materials and methods 8
1.Animal model of tension-controlled compressive neuropathy 8
2.Neurological sensory dysfunction 10
3.Muscle atrophy and nerve degeneration 10
4.Immunohistochemical staining 11
5.Statistics 11
Results 12
1.Compressive neuropathy under a modified chronic constriction injury (CCI) 12
2.Sensory dysfunction after different tension force compressive neuropathy 14
3.Histological appearance of the injured rat 15
4.Structural degeneration and neuroinflammation after compressive neuropathy 19
Discussion 22
Conclusion 27
Reference 28
參考文獻 1.Tham SK, Ireland DC, Riccio M, et al. Reverse radial artery fascial flap: a treatment for the chronically scarred median nerve in recurrent carpal tunnel syndrome. J Hand Surg Am. 1996 Sep;21(5):849-54.
2.Robertson C, Saratsiotis J. A review of compressive ulnar neuropathy at the elbow. J Manipulative Physiol Ther. 2005 Jun;28(5):345.
3.Assmus H, Antoniadis G, Bischoff C, et al. Cubital tunnel syndrome - a review and management guidelines. Cent Eur Neurosurg. 2011 May;72(2):90-8.
4.Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus. 2004 May 15;16(5):E1.
5.Mackinnon SE, Dellon AL, Hudson, AR, et al. A primate model for chronic nerve compression. J. Reconstr Microsurg. 1985 Jan;1(3): 185-95.
6.Lowe JB 3rd, Mackinnon SE. Management of Secondary Cubital Tunnel Syndrome. Plast Reconstr Surg. 2004 Jan;113(1):E1-16.
7.Padua L, Padua R, Aprile, et al. Italian multicentre study of carpal tunnel syndrome. Differences in the clinical and neurophysiological features between male and female patients. J Hand Surg Br. 1999 Oct;24(5):579-82.
8.Padua L, LoMonaco M, Gregori B, et al. Neurophysiological classification and sensitivity in 500 carpal tunnel syndrome hands. Acta Neurol Scand. 1997 Oct;96(4):211-7.
9.Padua L, Aprile I, Mazza O, et al. Neurophysiological classification of ulnar entrapment across the elbow. Neurol Sci. 2001 Feb;22(1):11-6.
10.Rydevik B, Lundborg G. Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression. Scand J Plast Reconstr Surg. 1977;11(3):179-87.
11.Jones NF, Ahn HC, Eo S. Revision surgery for persistent and recurrent carpal tunnel syndrome and for failed carpal tunnel release. Plast Reconstr Surg. 2012 Mar;129(3):683-92.
12.Tang P, Hoellwarth JS, Chauhan A. Recurrent Cubital Tunnel Syndrome A Critical Analysis Review. JBJS Rev. 2016 Mar 8;4(3): E3.
13.Kulick MI, Gordillo G, Javidi T, et al. Long-term analysis of patients having surgical treatment for carpal tunnel syndrome. J Hand Surg Am. 1986 Jan;11(1):59-66.
14.Concannon MJ, Brownfield ML, Puckett CL. The incidence of recurrence after endoscopic carpal tunnel release. Plast Reconstr Surg. 2000 Apr;105(5):1662–5.
15.Stutz N, Gohritz A, van Schoonhoven J, et al. Revision surgery after carpal tunnel release: Analysis of the pathology in 200 cases during a 2 year period. J Hand Surg Br. 2006 Feb;31(1):68-71.
16.Attal N. Neuropathic pain: mechanisms, therapeutic approach, and interpretation of clinical trials. Continuum (Minneap Minn). 2012 Feb;18(1):161-75.
17.Dworkin RH, Backonja M, Rowbotham MC et al. Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch. Neurol. 2003 Nov;60(11):1524-34.
18.Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010 Aug;9(8):807-19.
19.Dubinsky RM, Miyasak J. Assessment: efficacy of transcutaneous electric nerve stimulation in the treatment of pain in neurologic disorders (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2010 Jan 12;74(2):173-6.
20.Cruccu G, Aziz TZ, Garcia-Larrea L, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol. 2007 Sep;14(9):952-70.
21.Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007 Nov;10(11):1361-8.
22.Ellis A, Bennett DL. Neuroinflammation and the generation of neuropathic pain. Br J Anaesth. 2013 Jul;111(1):26-37.
23.Tofaris GK, Patterson PH, Jessen KR, et al. Denervated Schwann cells attract marchphages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci. 2002 Aug 1;22(15):6696-703.
24.Sugiura S, Lahav R, Han J, et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur J Neurosci, 2000 Feb;12(2):457-66.
25.Solomon A, Aloe L, Peter J, et al. Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol. 1998 Sep;102(3):454-60.
26.Sorkin LS, Xiao WH, Wagner R, et al. Tumor necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience. 1997 Nov;81(1):255-62.
27.Okamoto K, Martin DP, Schmelzer JD, et al. Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathy pain. Exp Neurol. 2001 Jun;169(2):386-91.
28.Lim TK, Shi XQ, Johnson JM, et al. Peripheral nerve injury induces persistent vascular dysfunction and endoneurial hypoxia, contributing to the genesis of neuropathic pain. J. Neurosci. 2015 Feb 25;35(8):3346-59.
29.Ahlgren SC, Levine JD. Mechanical hyperalgesia in streptozotocin-diabetic rats. Neuroscience. 1993 Feb;52(4):1049-55.
30.Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine- induced painful peripheral neuropathy. Pain. 2004 May;109(1-2):150-61.
31.Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992 Sep;50(3):355-63.
32.Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain. 1990 Nov;43(2):205-18.
33.Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000 Aug;87(2):149-58.
34.Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988 Apr;33(1):87-107.
35.Austin PJ, Wu A, Moalem-Taylor G. Chronic constriction of the sciatic nerve and pain hypersensitivity testing in rats. J Vis Exp. 2012 Mar 13;(61).
36.Myers RR, Yamamoto T, Yaksh TL, et al. The role of focal nerve ischemia and Wallerian degeneration in peripheral nerve injury producing hyperesthesia. Anesthesiology. 1993 Feb; 78(2):308-16.
37.Grace PM, Hutchinson MR, Manavis J, et al. A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods. 2010 Oct; 193(1):47-53.
38.Kajander KC, Pollock CH, Berg H. Evaluation of hindpaw position in rats during chronic constriction injury (CCI) produced with different suture materials. Somatosens Mot Res.1996; 13(2):95-101.
39.Xu J, Pollock CH, Kajander KC. Chromic gut suture reduces calcitonin-gene-related peptide and substance P levels in the spinal cord following chronic constriction injury in the rat. Pain. 1996 Mar;64(3):503-9.
40.Sommer C, Schafers M. Painful mononeuropathy in C57BL/Wld mice with delayed wallerian degeneration: differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity. Brain Res. 1998 Feb 16;784(1-2):154-62.
41.Walczak JS, Beaulieu P. Comparison of three models of neuropathic pain in mice using a new method to assess cold allodynia: the double plate technique. Neurosci Lett. 2006 May 22;399(3):240-4.
42.Camara-Lemarroy CR, Guzman-de la Garza FJ, FernandezGarza NE. Molecular inflammatory mediators in peripheral nerve degeneration and regeneration. Neuroimmunomodulation. 2010;17(5):314-24.
43.Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011 Aug 30;8:110.
44.Stoll G, Muller HW. Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol. 1999 Apr;9(2):313-25.
45.Dubovy P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011 Jul;193(4):267-75.
46.Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factoralpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 2002 Apr 15;22(8):3052-60.
47.Fregnan F, Muratori L, Simões AR, et al. Role of inflammatory cytokines in peripheral nerve injury. Neural Regen Res. 2012 Oct 15;7(29):2259-66.
48.Hashizume H, DeLeo JA, Colburn RW, et al. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine(Phila Pa 1976). 2000 May 15;25(10):1206-17.
49.Kawasaki Y, Xu ZZ, Wang X, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008 Mar;14(3):331-6.
50.Lee HL, Lee KM, Son SJ, et al. Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model. Neuroreport. 2004 Dec 22; 15(18):2807-11.
51.Perrin FE, Lacroix S, Aviles-Trigueros M, Davis S. Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain. 2005 Apr;128(Pt 4):854-66.
52.Rotshenker S, Aamar S, Barak V. Interleukin-1 activity in lesioned nerve. J. Neuroimmunol. 1992 Jul; 39(1-2):75-80.
53.Ruohonen S, Khademi M, Jagodic M, et al. Cytokine responses during chronic denervation. J. Neuroinflamm. 2005 Nov 18;2:26-37.
54.Uceyler N, Tscharke A, Sommer C. Early cytokine expression in mouse sciatic nerve after chronic constriction nerve injury depends on calpain. Brain Behav Immun. 2007 Jul; 21(5):553-60.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw