進階搜尋


下載電子全文  
系統識別號 U0026-1502201712260100
論文名稱(中文) 應用於無線眼壓訊號傳輸和注射液排空監控的天線設計
論文名稱(英文) Antenna Design for Wireless Transmission of Ocular Pressure Signal and Injection Fluid Empty Monitoring
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 1
出版年 106
研究生(中文) 丁嗣翰
研究生(英文) Ssu-Han Ting
學號 N28011255
學位類別 博士
語文別 英文
論文頁數 80頁
口試委員 指導教授-羅錦興
召集委員-陳文山
口試委員-楊慶隆
口試委員-簡聰富
口試委員-郭介森
口試委員-吳智光
中文關鍵字 穿戴式  環形天線  射頻辨識系統  監控系統 
英文關鍵字 Wearable  loop antenna  radio frequency identification system  monitoring system 
學科別分類
中文摘要 現今無線生醫遙測系統廣泛的被討論及應用,目的皆在擷取人體的生理訊號,作為健康監控與觀察。然而要將無線裝置擺放在人體上甚至試體內因為受到環境和尺寸的限制,在天線設計上將會面臨重大的考驗。在目前已發表的數篇植入式天線研究文獻中顯示天線的操作頻段大多為單頻,且天線的體積約為150至1300 mm^2,天線增益都僅只有-38至-25 dBi,這樣的增益對射頻電路而言將會是極大的負擔。在穿戴式裝置研究方面,鮮少被提及使用何種天線架構適合被採用,對人體造成的影響也乏人討論。對於植入式與穿戴式天線而言在設計受限於人體環境影響,會使天線本體的輻射效率降低,且以往的天線架構都是採用PIFA結構,但PIFA結構所設計的天線皆為單路徑諧振且在高度不足的情況下容易有頻寬窄及幅射效率低的缺點,為了改善以往天線設計都為單頻的且頻寬不足的問題,在本文中提出了一個利用thin-film poly-para-xylylene 縮小尺寸的半波長環型天線設計,借此增加天線的頻寬與提升效率。
有鑑於醫療人手資源不足的情況下,如何有效的監控生理訊號將會是一個值得我們思考的方向。以往監測時都需要護理人員繁複的檢查,為了解決這惱人的問題同時在本文中亦討論到如何利用電波在不同材質傳遞與諧振時會產生出不同的效果的特性設計了一款整合了RFID Chip的注射液排空天線警報天線,借此解決了醫護人員不足的問題。研究結果顯示本文所提出的以thin-film poly-para-xylylene 所製作的半波長天線可同時涵蓋2.4 (2.4-2.4835 GHz)與5G (5.15-5.85 GHz) 兩個通訊頻段,這樣的設計不僅可將天線的體積縮小至僅38mm^3,天線在分別在2.4 與5 GHz時的增益與輻射效能平均值分別為 -4.8,-3.7 dBi與10.2 %, 20.5%,其對人體的10 g SAR值模擬結果透過降低輸入能量後2.4與5 GHz皆可符合10 g SAR的規範(2W/Kg)。在注射液排空間空天線設計上,為了驗證其警報的準確度其中也整合了RFID系統,透過反覆驗證後得到的實驗數據以高斯機率分佈模型計算,可得到當點滴液使用到剩下12.6到7.3 ml時發報的準確率可高達96%,這樣的設計可有效通知護理人員更換點滴以避免漏針。以上的天線設計可提高天線的使用層面,未來希望整合這兩種資料傳輸與監控系統,以便利現代人的生活以達到全方位的健康照護。
英文摘要 Recently, wireless biotelemetry system (WBS) are widely applied to acquire physiological signals for healthcare monitoring applications. In order to wear a wireless sensing device, even implant it into human body, the limitations of environment and size would cause great influences on antenna design in or on human body. As reported in published articles, the size of implantable antenna are around 150 to 1300 mm^3, but the antenna gains are only about -38 to -25 dBi. The poor radiation efficiency for those design would increase the loading and risks of RF system design. In the wearable device research, rarely referred to which antenna architecture Suitable to be used, the impact on the human body was also lack of discussion. For the implantable and wearable antenna is limited by the human body environmental impact at design part, and it with human tissue will reduce the antenna radiation efficiency. In previous implantable and wearable antenna research, the most of antenna architecture are used PIFA type, but this one has some shortcomings such as narrow bandwidth and poor radiation efficiency when the radiation arm is close to ground plane. In order to improve the bandwidth and efficiency, in this proposed loop type antenna is used in the design to promote antenna bandwidth and radiation efficiency, and also used the new material (thin-film poly-para-xylylene) is well to reduce antenna size.
Now in view of the shortage of medical manpower resources, how to effectively monitor a physiological signal will be worth thinking about the direction. In the past, it need nurses to recheck, in order to solve this annoying problem we also proposed the new antenna design for injection fluid empty monitoring. We use the injection fluid as the antenna base to design it, and we also used RFID system detection the warning signal. When injection fluid reduce to 12.6 ml antenna resonance mode will shift to 915 MHz, at this moment system will sent the warning massage to nursing station, by this system to solve the problem of medical understaffed.
The measured results indicate that the proposed the half wave wearable antenna can cover 2.4 (2.4-2.4835 GHz) and 5G (5.15-5.85 GHz) two ISM bands operation. Using this material it can reduce antenna size to 38 mm^3, antenna average gain and efficiency at 2.4 and 5 GHz can achieve -4.8,-3.7 dB and 10.2 %, 20.5 %. Antenna simulated SAR value was less than FCC 1-g SAR specification (1.6W/Kg) at 2.4 and 5 GHz. At injection fluid empty monitoring antenna design we also verification the warning accuracy by integration the RFID system. Using these measured results we can get the mean (μ) and standard deviation (σ). By normal probability distribution calculation we can get the warning interval. The warning internal is 12.6 to 7.3 ml, and in this internal the accuracy of the reported up to 96%. This accurate warning system can effective to notice nursing station, by this way it can reduce the work of nursing staff. According to the results of measurement, it reveals the proposed antenna suitable for the design of monitoring applications.
論文目次 Table of Contents
摘要 I
Abstract III
誌謝 V
Table Caption IX
Figure Caption X
CHAPTER 1 INTRODUCTION Overview of Implantable Biotelemetry System 1
1.1 Preview of Wireless Home/Healthcare Monitoring System 1
1.2 Preview of Wireless Portable Device for Physiological Signal Acquisition 5
1.3 Introduction RFID Reader Circular antenna 8
1.4 Introduction RFID for inventory management and IV fluid level warning system 10
1.5 Organization of the Dissertation 12
CHAPTER 2 Background theory 13
2.1 Theory of Implantable Antenna 13
2.2 Development of Tissue Equivalent Phantom 14
2.2.1 Comparison of Permittivity and Conductivity between Human’s and Pig’s Eye. 15
2.2.2 Comparison of Permittivity and Conductivity between Dextrose and saline. 17
2.3 The EM Waves Depth of Penetration in Human Tissue 19
2.3.1 Theory of Depth of Penetration in Human Tissue 20
2.3.2 Evaluation of Operating Frequency of Implanted Antennas in Human Tissues 24
2.4 IEEE Standard of Specific Absorption Rate (SAR) 25
CHAPTER 3 Wireless Ocular Physiological Monitoring 29
3.1 Broadband Loop Antenna on Soft Contact Lens for Wireless Ocular Physiological Monitoring System 29
3.1.1 Wireless Ocular Physiological Monitoring Antenna Design 30
3.1.2 Results and Discussion 33
3.2 Design of Miniaturized Antenna and Power Harvester Circuit on the Enucleated Eyes ball 40
3.2.1 Design of a Stepped Loop Antenna 43
3.2.2 Matching network and rectifier design 45
3.2.3 Results and discussion 47
CHAPTER 4 Monitoring system based on RFID application 50
4.1 Theory of RFID Technology 50
4.2 Circular Polarization Antenna Design for RFID Reader System 52
4.3 Design of Dual mode RFID antenna for inventory management and IV fluid level warning system 56
4.3.1 Antenna Design for Dual mode RFID Tag 56
4.3.2 Results and Discussion 59
CHAPTER 5 Conclusion and Future Work 65
References 67
Publications list 79
參考文獻 [1] W. H. Ko, S.P. Liang, C. D. Fung, “Design of radio-frequency powered coils for implant instnments,” Medical Biological Engineering Computing, vol. 15, no. 6, pp 634-640, Jun. 1977.
[2] CM. Zicrhofer and E. S. Hochnair, “Geometric approach for coupling enhancement of magnetically coupled coils,” IEEE Trans. Biomedical Engincering, vol 43, no. 7 pp. 708-714, Jul, 1996.
[3] D. G. Galbraith, M. Sorna, and R. L. White, “A wide-band efficient inductive transdemnal power and data link with coupling insensitive gain,” IEEE Trans. Biomedical Engineering, vol. 34, pp. 265-275, Apr. 1987.
[4] S. Atluri. M. Ghovanloo, “Design of a wideband power-efficient inductive wireless link for implantable biomedical devices using multiple Camiers,” IEEE EMBS 2005, pp. 5-9, Mar. 2005.
[5] S. Atluri. M. Ghovanloo, “A wideband power-efficient inductive wireless link for implantable microelectronic devices using multiple camiers,” IEEE ISCAS 2006, pp. 1131-1134, Nov. 2006.
[6] M. Ghovanloo, S. Atlun, “A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers,” IEEE Trans Circuits and Systems I Regular Papers, vol. 4, no. 5, pp. 2211-2221, Oct. 2007.
[7] U. M. Jow, M. Ghovanloo, “Optimization of data colls in a multiband wireless link for neuroprosthetic implantable device,” IEEE Transaction on Biomedical Circuit and System, vol. 4, no. 5, pp.301-3010, Oct. 2012.
[8] Texas Instruments, CC1100 Low-Cost Low-Power Sub-1GHz RF Transceiver Data Sheet Rev. C, SWRS038C, May 2008.
[9] P. S. Pandian, K. P. Safeer, P. Gupta, D. T. Shakunthala, B. S. Sundersheshu, V. C. Padaki, “Wireless sensor network for wearable physiological monitoring,” Journal of Networks, vol. 3, no. 5, pp. 21-28, May. 2008.
[10] P. S. Pandian, K. Mohanavelu, K. P. Safeer, T. M. Kotresh, D. T. Shakunthala, P. Gopal, V. C. Padaki, “Smart vest: wearable multi-parameter remote physiological monitoring system,” Medical Engineering and Physic, vol. 30, no. 4, pp. 466-477, Sep. 2007.
[11] U. Anliker, J. A. Ward, P. Lukowicz, G. Troster, F. Dolveck, M. Baer, F. Keita, E. Schenker, F. Catarsi, L. Coluccini, A. Belardinelli, D. Shklarski, M. Alon, E. Hirt. R. Schmid, M. Vuskovic, “AMON: a wearable multiparameter medical monitoring and alert system,” IEEE Transaction on Information Technology in Biomedical, vol. 8, no. 4, pp. 1-11, Dec. 2004.
[12] N. Halin, M. Junnila, P. Loula, P. Aarnio, “The life shirt system for wireless patient monitoring in the operating room,” Journal of Telemedicine and Telecare, vol. 11, pp. 41-43, Jun. 2005.
[13] W. Mundt, K. N. Montgomery, U. E. Udoh, V. N. Barker, G. C. Thonier, A. M. Tellier, R. D. Ricks, R. B. Darling, Y. D. Caglc, N. A. Cabrol, S. J. Ruoss, J. L. Swain, J. W. Hines, G. T. A. Kovacs, “A multiparameter wearable physiologic monitoring system for space and terrestrial applications,” IEEE Transaction on Information Technology and Biomedical, vol. 9, no. 3, pp. 382-391, Sep. 2005.
[14] C. Gopalsamy, S. Park, R. Rajamanickam, S. Jayaraman, “The wearable motherboard TM: the first generation of adaptive and responsive textile structures (ARTS) for medical applications,” Virtual Reality, vol. 4, no. 3, pp. 152-168, Jun. 2002.
[15] Y. D. Lee, W. Y. Chung, “Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring.” Sensors and Actuators B: Chemical, vol. 140, no. 2, pp. 390 395, May. 2009.
[16] Dielectric Properties of Body Tissues, http://niremf.ifac.cnr.it/tissprop/
[17] P. Soontornpipit, C. M. Furse, and Y. C. Chung, “Design of implantable microstrip antennas for communication with medical implants,” IEEE Transactions on Microwave Theroy and Techniques, vol. 52, no. 8, pp. 1944-1951, 2004.
[18] J. Johnson, “Statistical analysis of detuning effects for implantable microstrip antennas, and characterizations,” IEEE Transactions on Microwave Theroy and Techniques, vol.52, no. 8, pp. 1934-1943, 2004.
[19] J. Kim, and Y. Rahmat,-Smii, “Implanted antennas inside a human body: Simulations, designs, and characterizations,” IEEE Transaction on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1934-1943, 2004.
[20]Y. Rahmat-Samii, and J. Kim, Implanted Antennas in Medical Wireless Communications, Morgan & Claypool Publishers, 2006.
[21] J. Kim, and Y. Rahmat-Sami, “Planar inverted F antennas on implantable mod devices M type versus spiral type,” Microwave and Technology Letters, vol. 48, no. 3, pp. 567-572, 2006.
[22] C. M. Lee, T. C. Yo, C. H. Luo, C. H. Tu, and Y. Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical device,” Electronics Letters, vol. 43, no. 12, pp. 660-662, 2007.
[23] C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Dual-resonant shape with double L-strips PIFA for implantable biotelemetry,” Electronics Letter, vol. 44, no. 14, pp. 837-838, 2008.
[24] W. C. Liu, F. M. Yeh, and M. Ghavami, “Minituarized implantable broadband antenna for biotelemetry communication,” Microwave and optical Technology Letters, vol.50, no. 9, pp. 2407-2409, 2008.
[25] T. Yilmaz, T. Karacolak, and E. Topsakal, “Characterization and testing of mimicking material for implantable antennas operating at ISM Band,” IEEE Antenna and Wireless Propagation Letters. Vol. 7, pp. 418-420, 2008.
[26] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring,” Transactions on Microwave Theon and Techniques, vol. 56, no. 4, pp. 1001-1008, 2008.
[27] W.I. Son, H. L. Lee, M. Q. Lee, S. B. Min and J. W. Yu, “Compact Square Quadrifilar Spiral Antenna with circular polarization for UHF mobile RFID Reader,” in Proc. Asia Pacific Microw. Conf., Melbourne, Australia, Dec. 2010.
[28] W.I. Son, W. G. Lim, M. Q. Lee, S. B. Min and J. W. Yu, “Printed Square Quadrifilar Spiral Antenna for UHF RFID Reader,” in Proc. IEEE Anetnnas and Propag. Society, Honolulu, Hawaii, USA, Jun. 2007.
[29] W.G. Lim, W. I. Son, K. S. Oh, W. K. Kin and J. W. Yu, “compact Integrated Antenna With Circulator for UHF RFID System,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 673-675, 2008.
[30] K. S. Oh, W. I. Son, S. Y. Cha, M. Q. Lee and J. W. Yu, “Compact Dual-Band Printed Quadrifilar Antennas for UHF RFID/GPS Operations,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 804-807, 2011.
[31] W. I. Son, W. G. Lim, M. Q. Lee, S. B. Min and J. W. Yu, “Printed Square Quadrifilar Helix Antenna (QHA) for GPS Receiver,” European Microw. Conf, Amsterdam, Netherlands, Oct. 2008.
[32] W. I. Son, W. G. Lim, M. Q. Lee, S. B. Min and J. W. Yu, “Design of Compact Quadruple Inverted-F Antenna With Circular Polarization for GPS Receiver,” IEEE Trans. Antennas Propag., vol.58, no. 5, pp. 1503-1510, May 2010.
[33] Chi-Fang Huang and Jen-Hung Lin, “A Warning System Based on the RFID Technology for Running-Out of Injection Fluid”, 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011.
[34] Andrea Cataldo, Giuseppe Cannazza, Nicola Giaquinto, Amerigo Trotta, Gregorio Andria, “Development of a Remote System for Real-Time Control of Intravenous Drip Infusions”, Medical Measurements and Applications Proceedings (MeMeA), 234 – 237, 30-31 May 2011.
[35] Andrea Cataldo, Giuseppe Cannazza, Nicola Giaquinto, Amerigo Trotta, and Gregorio Andria, “Microwave TDR for Real-Time Control of Intravenous Drip Infusions”, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 61, no. 7, July. 2012.
[36] Atsushi Ohsaga and Katsuyuki Kondoh, ” Bedside Medication Safety Management System Using a PDA and RFID Tags”, 2013 7th International Symposium on Medical Information and Communication Technology (ISMICT), 85-89, 6-8 March 2013.
[37] Chi-Fang Huang and Jen-Hung Lin, “A Warning System Based on the RFID Technology for Running-Out of Injection Fluid”, 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, August 30 - September 3, 2011.
[38] Klaus Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, Wiley & Sons Ltd. New York, 2nd edition, 2003.
[39] P. Soontornpipit, C. M. Furse, and Y. C. Chung, “Design of implantable microstrip antennas for communication with medical implants,” IEEE Transactions on Microwave Theroy and Techniques, vol. 52, no. 8, pp. 1944-1951, 2004.
[40] J. Johnson, “Statistical analysis of detuning effects for implantable microstrip antennas, and characterizations,” IEEE Transactions on Microwave Theroy and Techniques, vol.52, no. 8, pp. 1934-1943, 2004.
[41] J. Kim, and Y. Rahmat,-Smii, “Implanted antennas inside a human body: Simulations, designs, and characterizations,” IEEE Transaction on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1934-1943, 2004.
[42]Y. Rahmat-Samii, and J. Kim, Implanted Antennas in Medical Wireless Communications, Morgan & Claypool Publishers, 2006.
[43] J. Kim, and Y. Rahmat-Sami, “Planar inverted F antennas on implantable mod devices M type versus spiral type,” Microwave and Technology Letters, vol. 48, no. 3, pp. 567-572, 2006.
[44] C. M. Lee, T. C. Yo, C. H. Luo, C. H. Tu, and Y. Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical device,” Electronics Letters, vol. 43, no. 12, pp. 660-662, 2007.
[45] C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Dual-resonant shape with double L-strips PIFA for implantable biotelemetry,” Electronics Letter, vol. 44, no. 14, pp. 837-838, 2008.
[46] W. C. Liu, F. M. Yeh, and M. Ghavami, “Minituarized implantable broadband antenna for biotelemetry communication,” Microwave and optical Technology Letters, vol.50, no. 9, pp. 2407-2409, 2008.
[47] T. Yilmaz, T. Karacolak, and E. Topsakal, “Characterization and testing of mimicking material for implantable antennas operating at ISM Band,” IEEE Antenna and Wireless Propagation Letters. Vol. 7, pp. 418-420, 2008.
[48] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring,” Transactions on Microwave Theon and Techniques, vol. 56, no. 4, pp. 1001-1008, 2008. [49] T. Karacolak, R. Cooper, and E. Topsakal, “Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 9, pp. 2806-2812, Sept. 2009.
[50] T. Karacolak, R. Copper, J. Butler, S. Fisher, and E. Topsakal, “In vivo verification of implantable antennas using rats as model animals,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 334-337, 2010.
[51] W. C. Liu, S. H. Chen, and C. M. Wu, “Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices,” Microwave and Optical Technology Letters, vol. 51, no. 3, pp. 755-757, 2009.
[52] C. M. Lee, T.C. Yo, C. H. Luo, “Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry,” Microwave and Optical Technology Letters, vol. 51, no. 3, pp. 749-752, 2009.
[53] N. Vidal, and J. M. Lopez-Villegas, “Changes in electromagnetic field absorption in the presence of subcutaneous implanted devices: Minimizing increases in absorption,” IEEE Transactions on Electromagnetic Compatibility, vol. 52, no. 3, pp. 545-555, 2010.

[54] J. Gemio, J. Parron, and J. Soler, “Human body erects on implantable antennas for ISM bands application: Models comparison and propagation losses study,” Progress In Electromagnetics Research, vol. 110, pp. 437-452, 2010.
[55] Institute of Applied Physics (IFAC), Nello Carrara, http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htm.
[56] Italian National Research Council, Institute for Applied Physics, “Calculation of the Dielectric Properties of Body Tissues,” [Online]. Available: http//niremf.ifac.cnr.it/tissprop/htemlclie/htmlclie.htm.
[57] J. Gemio, J. Parron, and J. Soler, “Human body effects on implantable antennas for ism bands applications: models comparison and propagation losses study,” Progress In Electromagnetics Research, vol. 110, pp. 437-452, 2010.
[58] ICNIRP, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Phys., vol. 74, pp. 494-522, 1998.
[59] “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,” IEEE Standard C95.1-2005, 2005.
[60] “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,” IEEE Standard C95.1-1999, 1999.
[61] M. Leonardi, E. M. Pitchon, A. Bertsch, P. Renaud, and A. Mermoud, “Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes,” Acta Ophthalmologica, vol. 87, no. 4, pp. 433–437, 2009.
[62] K. Stangel, S. Kolnsberg, D. Hammerschmidt, B. J. Hosticka, H. K. Trieu, andW. Mokwa, “A programmable intraocular CMOS pressure sensor system implant,” IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1094–1100, 2001.
[63] J. Pandey, Y.-T. Liao,A. Lingley, R.Mirjalili, B. Parviz, and B. P. Otis, “A fully integrated RF-powered contact lens with a single element display,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 6, pp. 454–461, 2010.
[64] Y.-T. Liao, H. Yao, B. Parviz, and B. Otis, “A 3uW wirelessly powered CMOS glucose sensor for an active contact lens,” in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC ’11), pp. 38–39, February 2011.
[65] Institute of Applied Physics (IFAC), Nello Carrara, http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htm.
[66] AnsoftCorporationHFSS, http://www.ansoft.com/products/hf/ hfss/.
[67] J. Kim and Y. Rahmat-Samii, “Implanted antennas inside a human body: simulations, designs, and characterizations,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1934–1943, 2004.
[68] R. S. Yahya, and J. Kim, “Implanted antennas inside a human body: simulations, design, and characterizations,” IEEE Tran. Microwave Theory and Tech., vol. 52, (8), pp. 1934-1943, Aug., 2004.
[69] K. Gosalia, M. S. Humayun, and G. Lazzi, “Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis,” IEEE Trans Antennas Propag., vol. 53, no. 8, pp. 2365–2373, Aug. 2005.
[70] E. Y. Chow, C. L. Yang, and W. J. Chappell, “Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors,” IEEE Trans Antennas Propag., vol. 59, no. 6, pp. 2379–2387, Jun. 2011.
[71] Y. T. Liao, H. Yao, A. Lingley, B. Parviz, and B. P. Otis, “A 3-uW CMOS glucose sensor for wireless contact-lens tear glucose monitoring,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 335–344, Jan. 2012.
[72] M. Leonardi, E.M. Pitchon, A. Bertsch, P. Renaud, and A. Mermoud, “Wireless contact lens sensor for intraocular pressure monitoring: Assessment on enucleated pig eyes,” Acta Ophthal., vol. 87, no. 4, pp. 433–437, Jun. 2009.
[73] J. Pandey et al., “A fully integrated RF-powered contact lens with a single element display,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 454–461, May 2010.
[74] A. R. Lingley et al., “A single-pixel wireless contact lens display,” J. Micromech. Microeng., vol. 21, no. 125014, pp. 1–8, Dec. 2011.
[75] Italian National Research Council, Institute of Applied Physics (IFAC), Florence, Italy, “Dielectric properties of body tissues,” 2012 [Online]. Available: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htm
[76] M. T. Wu and M. L. Chuang, “Application of transmission-line model to dual-band stepped monopole antenna designing,” IEEE Antennas Wireless Progap. Lett., vol. 10, pp. 1449–1452, 2011.
[77] K. Jaehoon and Y. Rahmat-Samii, “Implanted antennas inside a human body: Simulations, designs, and characterizations,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1944–1951, Aug. 2004.
[78] Hui-Wen Cheng, Tsung-Chi Yu, Hong-Yi Huang, Ssu-Han Ting, Tzuen-Hsi Huang, Jin-Chern Chiou, and Ching-Hsing Luo, “Design of Miniaturized Antenna and Power Harvester Circuit on the Enucleated Porcine Eyes,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 13, 2014.
[79] A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, and F. D. Flaviis, “Power harvester design for passive UHF RFID tag using a voltage boosting technique,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1089–1097, Jun. 2007.
[80] ABIResearch, “Electronic Container Tracking White Paper,” ABI Research, 2004.
[81] ITU, “The Internet of Things, Executive Sununary, International Telecommunication Union (ITU),” ITU Internet Reports 2005, 2005.
[82] C.M. Roberts, “Radio frequency identification (RFID),” Comput Secur, vol. 25, no. 1,2006, pp. 18-26; DOl DOl 10.1016/j.cose.2005.l2.003.
[83] G. Roussos and V. Kostakos, “rfid in pervasive computing: State-of-theart and outlook,” Pervasive and Mobile Computing, vol. 5, no. 1, 2009, pp. 110-131.
[84] U. Sandner, J. Leimeister and H. Krcmar, “Business Potentials of Ubiquitous Computing,” Managing Development and Application of Digital Technologies, Berlin: Springer, 2006.
[85] G. Doukidis and K. Prarnatari, “Supply Chains of the Future and Emerging Consumer-Based Electronic Services,” Lecture Notes in Computer Science, vol. 3746, 2005, pp. 571.
[86] W. Zhou, “RFID and item-level information visibility,” European Journal of Operational Research, vol. 198, no. 1,2009, pp. 252-258.
[87] W. Zhou, Y. Tu and S. Piramuthu, “RFID-enabled item-level retail pricing,” Decision Support Systems, 2009.
[88] C. Swedberg, “Pelican RFID-Enables Its Cases,” March 26, 2008; http://www.rfidjournal.comlartic1e/articleview/3987/1/1/.
[89] A. Suenbuel, J. Schaper and T. Odenwald, “Towards a comprehensive integration and application platform for large-scale sensor networks,” Lecture Notes in Computer Science, vol. 3598, pp. 232, 2005.
[90] R. Craddock and E.S. Stansfield, “Sensor fusion for smart containers,’ 2005, pp. 12.
[91] T. Kiziltoprak, R. Schumann, A. Hahn and J. Behrens, “Distributed process control by smart containers,” Springer, pp. 08-30,2007.
[92] D. Uckelmann, “A Definition Approach to Smart Logistics,” Springer, pp. 284, 2008.
[93] G. Schuh, S. Gottschalk, T. Hohne and P. Attig, “Further potentials of Smart Logistics,” Manufacturing Systems and Technologies for the New Frontier, pp. 93-96, 2008.
[94] G.G. Meyer, K. Framling and J. Holmstrom, “Intelligent Products: A survey,” Computers in Industry, vol. 60, no. 3, 2009, pp. 137-148, 001 DOI IO.1016/j.compind.2008.12.005.
[95] A. Holmstrom, R. Kajosaari, K. Framling and E. Langius, “Roadmap to tracking based business and intelligent products,” Computers in Industry, vol. 60, no. 3, 2009, pp. 229-233; 001 00110. 1016/j.compind.2008. 12.006.
[96] T. L6pez, D. Ranasinghe, B. Patkai and D. McFarlane, “Taxonomy, technology and applications of smart objects,” Inform Syst Front, pp. 1-20.
[97] J. Park, C. Hsu and H. Arabnia, “Intelligent systems and smart homes,” Inform Syst Front, pp. 1-2.
[98] M. Seebauer, “The Role of RFID in Development of Intelligent Human Environment,” Towards Intelligent Engineering and Information Technology, pp. 457, 2009.
[99] P. Bull, R. Limb and R. Payne, "Pervasive home environments,” Bt Technol J, vol. 22, no. 3, pp. 65-72, 2004.
[100] L.P. Chuan, A. Johari, M.HA Wahab, D.M. Nor, N.SAM. Taujuddin and M.E. Ayob, “An RFID Warehouse Robot,” Icias 2007: International Conference on Intelligent & Advanced Systems, Vols 1-3, Proceedings, pp. 451-456, 2007.
[101] C. Loh Poh, A. Johari, M.HA Wahab, D.M. Nor, N.SAM. Taujuddin and M.E. Ayob, “An RFID warehouse robot,” Proc. Intelligent and Advanced Systems, 2007. ICIAS 2007. International Conference on, 2007, pp. 451-456.
[102] K. Al-Khateeb and JAY. Johari, “Intelligent dynamic traffic light sequence using RFID,” 2008 International Conference on Computer and Communication Engineering, Vol. 1-3, pp. 1367-1372, 2008.
[103] C. O'Driscoll, D. MacCormac, M. Deegan, F. Mtenzi and B. O'Shea, “RFID: An ideal technology for ubiquitous computing,” Ubiquitous Intelligence and Computing, Proceedings, vol. 5061,2008, pp. 490-504
[104] J. Park, C. Hsu and H. Arabnia, “Intelligent systems and smart homes,” Inform Syst Front, pp. 1-2.
[105] Q. Sheng, S. Zeadally, Z. Luo, J.-Y. Chung and Z. Maamar, “Ubiquitous RFID: Where are we,” Inform Syst Front.
[106] J.K. Siror, S. Huanye, W. Dong and W. Jie, “Use of RFID Based Real Time Location Tracking System to Curb Diversion of Transit Goods in East Africa,” Proc. Ubiquitous Information Technologies & Applications, 2009. ICUT '09. Proceedings of the 4th International Conference on, pp. 1-7, 2009.
[107] J.K. Siror, H. Sheng, W. Dong and J. Wu, “Application of RFID Technology to Curb Diversion of Transit Goods in Kenya,” Proc. INC, IMS and IOC, 2009. NCM '09. Fifth International Joint Conference on, pp. 1532-1539, 2009.
[108] D.S. Barbara Cass, Janna Gilbert, Kristen Foster, Peter White, “Customs' Cargo Management Re-engineering Project – Australian Customs Service,” Book Customs' Cargo Management Re-engineering Project - Australian Customs Service, Series Customs' Cargo Management Re-engineering Project - Australian Customs Service, ed., Editor ed.leds., Commonwealth of Australia, pp. 113-127, 2007.
[109] J.K. Siror, S. Huanye, W. Dong and W. Jie, “Use of RFID Based Real Time Location Tracking System to Curb Diversion of Transit Goods in East Africa,” Proc. Ubiquitous Information Technologies & Applications, 2009. ICUT '09. Proceedings of the 4th International Conference on, pp. 1-7, 2009.
[110] W. I. Son, W. G. Lim, M. Q. Lee, S. B. Min and J. W. Yu, “Design of Compact Quadruple Inverted-F Antenna With Circular Polarization for GPS Receiver,” IEEE Trans. Antennas Propag., vol.58, no. 5, pp. 1503-1510, May 2010.
[111] Asimina Kiourti, and Konstantina S. Nikita, “Miniature Scalp-Implantable Antennas for Telemetry in the MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis”, IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 60, no. 8, August, 2012.
[112] David K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, 1989.
[113] https://support.impinj.com/hc/en-us/articles/202756908-Monza-4-RFID-Tag-Chip-Datasheet
[114] Chi-Fang Huang, Jing-Qing Zhan and Tsung-Yu Hao, ”RFID Tag Antennas Designed by Fractal Features and Manufactured by Printing Technology,” The 1st International Workshop on RFID Technology - Concepts, Applications, Challenges Workshop, Funchal, Portugal, June, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw