進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1502201616130200
論文名稱(中文) 人類海馬迴前後長軸向之功能特化檢驗
論文名稱(英文) Examination of the Long-axis Specialization of the Human Hippocampus : An fMRI Study
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 104
學期 1
出版年 105
研究生(中文) 黃菁
研究生(英文) Ching Huang
學號 U76021030
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 口試委員-張智宏
口試委員-白明奇
指導教授-林君昱
中文關鍵字 海馬迴  位置細胞  位置域  適應效果  重複抑制 
英文關鍵字 hippocampus  place cell  place field  adaptation  repetition suppression 
學科別分類
中文摘要 海馬迴(hippocampus),前後長軸向是否有功能上之差異一直是個重要的議題。動物研究中發現老鼠海馬迴腹側(相對於人類海馬迴長軸向前端)的位置細胞(place cell)之位置域(place field)較背側(後端)來得大,但人類在這方面的相關證據卻仍不一致。Morgan等人(2011)利用fMRI適應效果(adaptation)的派典來研究人類海馬迴,其結果發現左側海馬迴前端所產生的適應效果與相鄰兩刺激地標間的距離呈線性關係,當相鄰兩刺激地標距離越近,其適應效果越大。在本研究中我們參照Morgan等人(2011)的研究派典並加以修改,以檢驗海馬迴前後側上位置細胞的活化反應之差異。在實驗一中,我們利用區間設計並加入更短距離配對之刺激,其結果發現海馬迴中、後側的活化反應隨著地標間距離變遠而有增強的趨勢。而在實驗二中我們採用Morgan等人的研究派典,並且增加了更短距離的地標刺激配對,結果發現海馬迴後側的活化反應則是與地標間距離遠近呈現顯著負相關。因此在本研究中的結果雖未如假設所推論當相鄰地標刺激越接近時會產生越大的適應效果,但研究結果另一方面卻是支持過去所認為海馬迴後側與負責處理細節資訊較有相關。
英文摘要 The hippocampus plays an important role in memory and spatial cognition. It acts like an inner GPS in the brain. It has been shown from animal studies that the areas along the long axis of the hippocampus may have different specialized functions. In rats, many studies have found that the size of place field of the place cells in the ventral hippocampus is larger than that in the dorsal hippocampus. Whether it is the same in humans remains unclear. In this study, we used the fMRI adaptation paradigm to explore how the distances between landmarks in the real world are represented in the hippocampus. In conclusion, we found the activation of the posterior hippocampus correlated with distances of consecutive landmarks presented.
論文目次 摘要 I
Extended Abstract II
致謝 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
第一節 前言 1
第二節 文獻探討 2
海馬迴前後長軸向之差異 2
位置細胞(動物研究) 5
位置細胞(人類研究) 6
第三節 研究問題與假設 8
第二章 實驗一 15
第一節 研究方法 15
實驗參與者 15
實驗設計 16
刺激與材料 17
實驗程序 18
磁振造影影像之取得 21
功能性磁振造影影像資料分析 22
第二節 結果 25
行為資料分析 25
fMRI影像資料分析 27
第三節 討論 34
第三章 實驗二 37
第一節 研究方法 37
實驗參與者 38
實驗刺激材料與設備 39
實驗程序 40
磁振造影影像之取得 45
功能性磁振造影影像資料分析 46
第二節 結果 49
前測行為資料分析 49
行為資料分析 51
fMRI影像資料分析 53
第三節 討論 63
重複抑制現象(repetition suppression) 63
調節參數模型 63
海馬迴前後軸活化差異之比較 65
第四章 總結 69
第一節 綜合討論 69
實驗一 69
實驗二 70
研究之混淆變項與限制 71
第二節 結論 73
參考文獻 75
附錄A 81
附錄B 82
附錄C 88
附錄D 89


參考文獻 Baumann, O., Chan, E., & Mattingley, J. B. (2010). Dissociable neural circuits for encoding and retrieval of object locations during active navigation in humans. NeuroImage, 49(3), 2816–2825. http://doi.org/10.1016/j.neuroimage.2009.10.021
Buzsáki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15(7), 827–840. http://doi.org/10.1002/hipo.20113
Corkin, S. U. (1968). Acquisition of motor skill after bilateral medial temporal obe excision. Neuropsychologia, 225–265.
Doeller, C. F., King, J. A., & Burgess, N. (2008a). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences, 105(15), 5915–5920. http://doi.org/10.1073/pnas.0801489105
Doeller, C. F., King, J. A., & Burgess, N. (2008b). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences, 105(15), 5915–5920. http://doi.org/10.1073/pnas.0801489105
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The Hippocampus, Memory, and Place Cells: Is It Spatial Memory or a Memory Space? Neuron, 23(2), 209–226. http://doi.org/10.1016/S0896-6273(00)80773-4
Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–188. http://doi.org/10.1038/nature01964
Epstein, R. A., Higgins, J. S., & Thompson-Schill, S. L. (2005). Learning places from views: variation in scene processing as a function of experience and navigational ability. Journal of Cognitive Neuroscience, 17(1), 73–83. http://doi.org/10.1162/0898929052879987
Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2012a). Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study. Neuropsychologia, 50(13), 3094–3106. http://doi.org/10.1016/j.neuropsychologia.2012.08.008
Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2012b). The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: a longitudinal fMRI study. Hippocampus, 22(4), 842–852. http://doi.org/10.1002/hipo.20944
Hoscheidt, S. M., Nadel, L., Payne, J., & Ryan, L. (2010). Hippocampal activation during retrieval of spatial context from episodic and semantic memory. Behavioural Brain Research, 212(2), 121–132. http://doi.org/10.1016/j.bbr.2010.04.010
Hughes, K. R. (1965). Dorsal and ventral hippocampus lesions and maze learning: Influence of preoperative environment. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 19(4), 325–332. http://doi.org/10.1037/h0082915
Jacobs, J., Kahana, M. J., Ekstrom, A. D., Mollison, M. V., & Fried, I. (2010). A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6487–6492. http://doi.org/10.1073/pnas.0911213107
Kjelstrup, K. B., Solstad, T., Brun, V. H., Hafting, T., Leutgeb, S., Witter, M. P., … Moser, M.-B. (2008). Finite Scale of Spatial Representation in the Hippocampus. Science, 321(5885), 140–143. http://doi.org/10.1126/science.1157086
Kjelstrup, K. G., Tuvnes, F. A., Steffenach, H.-A., Murison, R., Moser, E. I., & Moser, M.-B. (2002). Reduced fear expression after lesions of the ventral hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10825–10830. http://doi.org/10.1073/pnas.152112399
Kumaran, D., & Maguire, E. A. (2006). An Unexpected Sequence of Events: Mismatch Detection in the Human Hippocampus. PLoS Biol, 4(12), e424. http://doi.org/10.1371/journal.pbio.0040424
Lepage, M., Habib, R., & Tulving, E. (1998). Hippocampal PET activations of memory encoding and retrieval: The HIPER model. Hippocampus, 8(4), 313–322. http://doi.org/10.1002/(SICI)1098-1063(1998)8:4<313::AID-HIPO1>3.0.CO;2-I
Mayes, A. R., Montaldi, D., Spencer, T. J., & Roberts, N. (2004). Recalling spatial information as a component of recently and remotely acquired episodic or semantic memories: an fMRI study. Neuropsychology, 18(3), 426–441. http://doi.org/10.1037/0894-4105.18.3.426
Morgan, L. K., Macevoy, S. P., Aguirre, G. K., & Epstein, R. A. (2011). Distances between real-world locations are represented in the human hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(4), 1238–1245. http://doi.org/10.1523/JNEUROSCI.4667-10.2011
Moser, E., Moser, M.-B., & Andersen, P. (1993). Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. Journal of Neuroscience, 13(9), 3916–3925.
Moser, M. B., Moser, E. I., Forrest, E., Andersen, P., & Morris, R. G. (1995). Spatial learning with a minislab in the dorsal hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 92(21), 9697–9701.
Nadel, L. (1968). Dorsal and ventral hippocampal lesions and behavior. Physiology & Behavior, 3(6), 891–900. http://doi.org/10.1016/0031-9384(68)90174-1
O’Keefe, J., & Conway, D. H. (1978). Hippocampal place units in the freely moving rat: Why they fire where they fire. Experimental Brain Research, 31(4), 573–590. http://doi.org/10.1007/BF00239813
O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.
Poppenk, J., Walia, G., McIntosh, A. r., Joanisse, M. f., Klein, D., & Köhler, S. (2008). Why is the meaning of a sentence better remembered than its form? An fMRI study on the role of novelty-encoding processes. Hippocampus, 18(9), 909–918. http://doi.org/10.1002/hipo.20453
Poucet, B., Thinus-Blanc, C., & Muller, R. U. (1994). Place cells in the ventral hippocampus of rats. NeuroReport, 5(16), 2045–2048.
Richmond, M. A., Yee, B. K., Pouzet, B., Veenman, L., Rawlins, J. N., Feldon, J., & Bannerman, D. M. (1999). Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behavioral Neuroscience, 113(6), 1189–1203.
Rosenbaum, R. S., Ziegler, M., Winocur, G., Grady, C. L., & Moscovitch, M. (2004). “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus, 14(7), 826–835. http://doi.org/10.1002/hipo.10218
Ryan, L., Lin, C.-Y., Ketcham, K., & Nadel, L. (2010). The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus, 20(1), 11–18. http://doi.org/10.1002/hipo.20607
Scoville, W. B., & Milner, B. (2000). Loss of recent memory after bilateral hippocampal lesions. 1957. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(1), 103–113.
Shipman, S. L., & Astur, R. S. (2008). Factors affecting the hippocampal BOLD response during spatial memory. Behavioural Brain Research, 187(2), 433–441. http://doi.org/10.1016/j.bbr.2007.10.014
Spaniol, J., Davidson, P. S. R., Kim, A. S. N., Han, H., Moscovitch, M., & Grady, C. L. (2009). Event-related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsychologia, 47(8–9), 1765–1779. http://doi.org/10.1016/j.neuropsychologia.2009.02.028
Spiers, H. J., & Maguire, E. A. (2006). Thoughts, behaviour, and brain dynamics during navigation in the real world. NeuroImage, 31(4), 1826–1840. http://doi.org/10.1016/j.neuroimage.2006.01.037
Tyler, L. K., Chiu, S., Zhuang, J., Randall, B., Devereux, B. J., Wright, P., … Taylor, K. I. (2013). Objects and categories: Feature statistics and object processing in the ventral stream. Journal of Cognitive Neuroscience, 25(10), 1723–1735. http://doi.org/10.1162/jocn_a_00419
Woollett, K., & Maguire, E. A. (2012). Exploring anterograde associative memory in London taxi driver. NeuroReport, 23(15), 885–888. http://doi.org/10.1097/WNR.0b013e328359317e
Xu, J., Evensmoen, H. R., Lehn, H., Pintzka, C. W. S., & Håberg, A. K. (2010). Persistent posterior and transient anterior medial temporal lobe activity during navigation. NeuroImage, 52(4), 1654–1666. http://doi.org/10.1016/j.neuroimage.2010.05.074
Yi, D.-J., & Chun, M. M. (2005). Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(14), 3593–3600. http://doi.org/10.1523/JNEUROSCI.4677-04.2005
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-02-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw