進階搜尋


 
系統識別號 U0026-1502201615112400
論文名稱(中文) 二氧化碳封存量於近耗竭凝結油氣層之解析及模擬研究
論文名稱(英文) Analytical and Numerical Studies of CO2 Storage Capacity in Nearly Depleted Gas Condensate Reservoirs
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 1
出版年 105
研究生(中文) 沈建豪
研究生(英文) Chien-Hao Shen
學號 N48001026
學位類別 博士
語文別 英文
論文頁數 107頁
口試委員 指導教授-謝秉志
共同指導教授-林再興
口試委員-徐國錦
召集委員-楊耿明
口試委員-林殿順
口試委員-吳榮章
中文關鍵字 p/z作圖法  數值模擬  物質平衡法  PVT特性分析 
英文關鍵字 p/z plot  numerical simulation  material balance equation  PVT property analysis 
學科別分類
中文摘要 本研究目的是以物質平衡法理論推導二氧化碳封存於天然氣氣層之解析方程式通解,以及無因次注儲典型曲線作為二氧化碳封存量估算之用,並透過數值模擬法進行驗證比較,現場案例研究,建立已耗竭凝結油氣層之數值模型,透過歷史調諧以及二氧化碳注儲操作,進行解析法與數值法之結果比較。
本研究推導出天然氣層在有無水驅機制之二氧化碳封存量解析方程式通解,適用於乾氣、濕氣以及凝結油氣層;亦可將注儲解析方程式轉換成注儲典型曲線做為二氧化碳封存封存量估算之用,預期做為二氧化碳封存於舊天然氣層之場址篩選評估之用。
凝結油氣層生產及注儲二氧化碳行為之p/z2p隨壓力變化中,生產期間之偏差因子會隨著壓力下降而變小,當注入二氧化碳時,隨著二氧化碳與天然氣混合,混合之偏差因子會緩慢的上升,其趨勢會逐漸接近於純二氧化碳之偏差因子,整體而言會比生產期間之天然氣偏差因子的值還小。同樣地,觀察p/z曲線隨壓力變化,比較相同壓力下之p/z值,二氧化碳注入期間之p/z值比天然氣生產期間變化來得低,此現象代表著二氧化碳注入於地層之中,可以封存的量會比天然氣產量還要來得多。
比較乾氣層及凝結油氣層在相同生產及注儲操作下(一樣的注產氣比操作),凝結油氣層之氣體採收率會略低於乾氣層,若直接使用乾氣層之典型曲線進行凝結油氣層之二氧化碳封存量估算會產生誤差;故在凝結油氣層之二氧化碳封存能力估算上,必須考慮整體的油氣產量(天然氣及凝結油),方能達到精確的封存量估算,也顯示出凝結油氣層相對於乾氣層之二氧化碳封存潛能優勢。針對所推導之凝結油氣層物質平衡法進行變動地層原始壓力及流體成分性質(貧氣及富氣凝結油氣層)之敏感度分析結果中,都得到不同的預測及驗證結果。
本研究所推導二氧化碳注儲分析曲線應用於台灣Y凝結油氣層進行歷史調諧及二氧化碳注儲模擬研究,p/z作圖法分析得初始氣體埋藏量為45,540 MMSCF,其氣體採收率為0.72,模擬過程中注入48,870 MMSCF(2.58百萬噸)二氧化碳,其p/z比值(PZR)為1.275(地層壓力回復至4,850 psi);而原始油氣當量(DTE)為1.088,生產油氣當量(DPE)為1.028,代入典型曲線方程式可得預測之注產氣比為1.443。
英文摘要 The purpose of this study is to develop general analytical equations and type curves for estimating the CO2 storage capacity of natural gas reservoirs. Numerical simulations for different types of natural gas reservoirs were done to study the CO2 storage capacity and to validate the developed analytical solutions. A simulation case study is implemented to calculate the CO2 storage capacity in a target storage site, and the simulated result of CO2 storage capacity is compared by that from the derived p/zmixCO2 plot.
This study successfully derives general analytical equations and type curves. This general solution is capable of analytically calculating CO2 storage capacity of dry-gas, wet-gas, and gas-condensate reservoirs. Furthermore, this method is useful for site screening of CO2 storage in depleted natural gas reservoirs.
In the gas-production stage, the z-factor of natural gas (z) decreased with the decreasing formation pressure. However, in the CO2-injection stage, the z-factor of mixed gases (zmixCO2) increased when the formation pressure was recovering. Generally, the value of the zmixCO2 was smaller than that of the z-factor of natural gas under a specific formation pressure. If the initial formation pressure (pi) is considered, the value of the pi/zmixCO2 when CO2 injection finished will be higher than that of the pi/zi of the gas-condensate reservoir. More CO2 can be stored in a gas-condensate reservoir than the amount of natural gas produced.
Numerical simulations for different types of gas reservoirs were used to study their CO2 storage capacity. Additionally, the comparisons of CO2 storage capacity estimates showed that the outcomes of analytical solutions and numerical simulation were similar. The accuracy of the derived general equation was validated.
For the case study, the target site was the Y gas-condensate reservoir located in the Y gas field in northwestern Taiwan. The original gas in place (OGIP) of the Y gas-condensate reservoir was about 45,540 million standard cubic feet (MMSCF) which was estimated from the p/z plot based on the measured productions, formation pressures, and corresponding z-factors. The Y gas-condensate reservoir is a nearly depleted reservoir with a very weak water drive.
Geological and numerical models of the Y gas-condensate reservoir were constructed in this study. Before the simulated CO2 injection started, the numerical model was well tuned using history matching. The simulations of CO2 injection showed that the total CO2 injected was 48,870 MMSCF (2.58 million tons) when the formation pressure was recovered to the initial pressure of 4,850 psi.
The injection/production ratio (IPR) calculated by the derived equation was 1.44 based on the estimates of the ratio of initial p/z and injected p/zmixCO2 (PZR), dimensionless total equivalent gas ratio (DTE), and dimensionless produced equivalent gas ratio (PEG) of 1.275, 1.088, and 1.028, respectively. The value of IPR from analytical method was identical to that derived using the numerical method.
論文目次 Abstract I
中文摘要 II
誌謝 IV
Contents V
List of Tables VII
List of Figures VIII
Nomenclature XII
Chapter 1 Introduction 1
1.1 Greenhouse effect and climate change 1
1.2 CO2 geosequestration 6
1.3 CO2 storage in depleted gas-condensate reservoirs 9
1.4 Motivation 13
1.5 Purposes 14
1.6 Organization 14
Chapter 2 Literature Review 16
2.1 Material balance equations in natural gas reservoirs 16
2.2 PVT properties calculation of gas-condensate reservoirs 22
2.3 CO2 storage and injection in depleted natural gas reservoir 25
2.4 Summary of literature review 34
Chapter 3 Theoretical background 35
3.1 Analytical solutions of p/z plot method 35
3.1.1 General solution of p/z plot of natural gas reservoir 35
3.1.2 Injecting general equations of p/zmix plot 38
3.1.3 Dimensionless injection type curve equations 40
3.1.4 Cumulative water influx 41
3.2 Numerical method of simulations 42
3.2.1 Equation of state (EOS) of Fluid 42
3.2.2 Numerical simulation 45
Chapter 4 Results and Discussion 48
4.1 Validation of p/z analytical equations during depletion 48
4.1.1 Validation of the p/z plot method in dry gas model 51
4.1.2 Validation of the p/z2p plot method in a gas-condensate model 54
4.1.3 Sensitivity analysis of the p/z2p plot method in the gas-condensate model 56
4.2 Validation of p/z analytical equations during CO2 injection 60
4.2.1 Validation of CO2 injection type curve for dry-gas reservoirs 60
4.2.2 Validation of CO2 injection type curve on gas-condensate reservoirs 64
Chapter 5 Case study 73
5.1 Geological, engineering, and fluid experimental data 73
5.2 EOS tuning using regression analysis 80
5.3 Numerical model construction and history matching 85
5.4 CO2 injection and type curve estimation 95
Chapter 6 Conclusions and Suggestions 100
6.1 Conclusions 100
6.2 Suggestions 102
References 103
參考文獻 Al-Abri, A., Sidiq, H., Amin, R. Mobility ratio, relative permeability and sweep efficiency of supercritical CO2 and methane injection to enhance natural gas and condensate recovery: core flooding experimentation. Journal of Natural Gas Science and Engineering, 9, 166-171, November 2012. doi: 10.1016/j.jngse.2012.05.011.
Alvarado, G., Le Blanc, J.L., Farshad, F. A new and improved material balance equation for retrograde gas condensate reservoirs - part I. Society of Petroleum Engineers, 1992. doi: 10.2118/24355-MS
Aziz, K., Settari, A. Petroleum Reservoir Simulation. Applied Science Publishers, London, 1979.
Bachu, S., Bradshaw, J., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N.P. Mathiassen, O.M. CO2 storage capacity estimation: methodology and gaps. International Journal of Greenhouse Gas Control, 1(4), 430-443, 2007.
Barrufet, M.A., Bacquet, A., Falcone, G. Analysis of the storage capacity for CO2 sequestration of a depleted gas condensate reservoir and a saline aquifer. Society of Petroleum Engineers, 4 (8), 23-31, August 2010. doi: 10.2118/139771-PA
Coats, K.H. Simulation of gas condensate reservoir performance. Journal of Petroleum Technology, 1870-1886, 1985.
Coats, K.H., Smart, G.T. Application of a regression-based EOS PVT program to laboratory data. SPERE, 277-299, 1986.
Computer Modelling Group (CMG). User’s Guide: GEM Advanced Compositional Reservoir Simulator. Calgary, Alberta, Canada, 2012.
Computer Modelling Group (CMG). User’s Guide: Winprop Phase Property Program. Calgary, Alberta, Canada, 2012.
CPC Corporation, Taiwan. CoreLab-PVT-report, 1973.
CPC Corporation, Taiwan. A feasibility study for improving gas recovery by lowering wellhead pressure for a gas reservoir. Report of Petroleum Foundation; Ministry of Economic Affairs, 2007. (in Chinese)
CPC Corporation, Taiwan, internal report, 2013.
Craft, B.C., Hawkins, M., Terry, R.E. Applied Petroleum Reservoir Engineering, 2nd ed. Prentice Hall, Englewood Cliffs, New Jersey, 1990.
El-Banbi, A.H., Forrest, J.K., Fan, L., McCain, Jr., W.D. Producing rich-gas-condensate reservoirs case history and comparison between compositional and modified black-oil approaches. Paper: SPE 58955; presented at the 2000 SPE International Petroleum Conference and Exhibition, Feb. 1-3, 2000.
El-Banbi, A.H., Fattah, K.A., Sayyouh, H. New modified black-oil PVT correlations for gas condensate and volatile oil fluids. Society of Petroleum Engineers, 2006. doi: 10.2118/102240-MS
Environmental Protection Administration (EPA). 2014 Taiwan greenhouse gas inventory report summary, 2014. (in Chinese)
Fang, Y., Li, B., Hu, Y., Sun, Z., Zhu, Y. Condensate gas phase behavior and development. Society of Petroleum Engineers, 1998. doi: 10.2118/50925-MS
Fattah K.A., El-Banbi A.H., Sayyouh M.H. Study compares PVT calculation methods for non-black oil fluid. Oil & Gas Journal, 104(12), 35-39, 2006.
Fattah, K.A. A new approach calculate oil-gas ratio for gas condensate and volatile oil reservoirs using genetic programming. Oil and Gas Business, 1, 311-323, 2012.
Hagoort, J. Fundamentals of Gas Reservoir Engineering. Elsevier, Amsterdam, 1988.
Havlena, D., Odeh, A.H. The material balance as an equation of a straight line. Journal of Petroleum Technology, 896-900, 1963.
Hsieh, B.Z. Study of using gas flooding to improve oil and gas recovery of gas/condensate reservoir in Taiwan (I), National Science Council (NSC) report, 2009. (Project number: NSC 97-ET-7-006-008-ET) (in Chinese)
Hsieh, B.Z., Study of using gas flooding to improve oil and gas recovery of gas/condensate reservoir in Taiwan (II), National Science Council (NSC) report, 2010. (Project number: NSC 98-ET-E-006-007-ET) (in Chinese)
IPCC (Intergovernmental Panel on Climate Change). IPCC special report on carbon dioxide capture and storage. C.U. Press, Cambridge, U.K., and New York, NY, USA, 2005.
IPCC (Intergovernmental Panel on Climate Change). Climate change 2014: impacts, adaptation, and vulnerability. WGII AR5 Summary for Policymakers, 2014.
Jalil, M.A.A., Masoudi, R., Darman, N.B., Othman, M. Study of the CO2 injection, storage, and sequestration in depleted M4 Carbonate gas condensate reservoir, Malaysia. Carbon Management Technology Conference, January 2012. doi: 10.7122/150050-MS
Lin, Z.S., Hsieh, B.Z., Study of PVT properties analysis and simulation of a gas condensate reservoir, research report (commissioned by EDRI (CPC Corporation, Taiwan)), 2007. (Project number: FED9614005) (in Chinese)
Lawal, A.S., Frailey, S.M. Material balance reservoir model for CO2 sequestration in depleted gas reservoirs. Society of Petroleum Engineers, January 2004. doi: 10.2118/90669-MS
Mauna Loa observatory. Mauna Loa Observatory: Scripps CO2 Program, 2014. http://co2now.org/Current-CO2/CO2-Now/global-co2-board.html
MOEA-BOE, CO2 Emissions from fuel combustion highlights, 2015. (in Chinese)
Narinesingh, J., Alexander, D. CO2 Enhanced gas recovery and geologic sequestration in condensate reservoir: a simulation study of the effects of injection pressure on condensate recovery from reservoir and CO2 storage efficiency, Energy Procedia, 63, 3107-3115, 2014. http://dx.doi.org/10.1016/j.egypro.2014.11.334.
Nassar, I.S., El-Banbi, A.H., Sayyouh, M.H.M. Modified black oil PVT properties correlations for volatile oil and gas condensate reservoirs. Society of Petroleum Engineers, 2013. doi: 10.2118/164712-MS
Rahmawati, S.D., Hoda, M.F., Kuntadi, A. CO2 injection project analysis using application of integrated model and optimization. Society of Petroleum Engineers, March 2015. doi: 10.2118/172725-MS
Ramharack, R.M., Aminian, K., Ameri, S. Impact of carbon dioxide sequestration in gas/condensate reservoirs. Society of Petroleum Engineers, January 2010. doi: 10.2118/139083-MS
Scharf, C., Clemens, T. CO2-sequestration potential in Austrian oil and gas fields. Society of Petroleum Engineers, January 2006. doi: 10.2118/100176-MS
Schilthuis, R.J. Active oil and reservoir energy. Trans. AIME 148, 33-52, 1936.
Shen, C.H., Hsieh, B.Z., Tseng, C.C., Chen, T.L. Case study of CO2-IGR and storage in a nearly depleted gas-condensate reservoir in Taiwan, Energy Procedia, 63, 7740-7749, 2014.
Siddiqui, F., Waqas, G.M., Khan, M.N. Application of general material balance on gas condensate reservoirs GIIP estimation. Society of Petroleum Engineers, 2010. doi: 10.2118/142847-MS
Sobers, L.E., Frailey, S.M., Lawal, A.S. Geological sequestration of carbon dioxide in depleted gas reservoirs. Society of Petroleum Engineers, 2004. doi: 10.2118/89345-MS
Spivak, A., & Dixon, T. N. Simulation of gas-condensate reservoirs. Society of Petroleum Engineers, 1973. doi: 10.2118/4271-MS
Shen, C.H, Study of carbon dioxide flooding to improve gas recovery in gas condensate reservoir. Master’s thesis, Department of Resources Engineering, NCKU, 2011. (in Chinese)
Shtepani, E. CO2 sequestration in depleted gas/condensate reservoirs. Society of Petroleum Engineers, January 2006. doi: 10.2118/102284-MS
Stein, M.H., Ghotekar, A.L., Avasthi, S. M. CO2 sequestration in a depleted gas field: a material balance study. Society of Petroleum Engineers, January 2010. doi: 10.2118/131384-MS
The Field Museum, ECCo, Climate Change in the Windy City and the World, 2012.
Tseng, C.C., Wu, P.Y, Hsieh, B.Z., Lin, Z.S. A study of improving gas recovery by lowering wellhead pressure for a retrograde condensate gas reservoir, Mining & Metallurgy, 54(3), 115-136, 2010. (in Chinese)
Tseng, C.C., Chen, T.L., Hu, S.T., Lin, Z.S. A simulation study on CO2 storage pilot test for the YHS field. Mining & Metallurgy, 56(1), 23-40, 2011. (in Chinese)
Tseng, C.C., Hsieh, B.Z., Hu, S.T., Lin, Z.S. Analytical approach for estimating CO2 storage capacity of produced gas reservoirs with or without a water drive. International Journal of Greenhouse Gas Control, 9, 254-261, 2012.
UNFCCC (United Nations Framework Convention on Climate Change), Draft report of the conference of the parties on its twenty-first session, COP 21, Nov. 30-Dec. 11, 2015.
Valbuena, E., Barrufet, M., Falcone, G. Analytical estimation of CO2 storage capacity in depleted oil and gas reservoirs based on thermodynamic state functions. Society of Petroleum Engineers, January 2012. doi: 10.2118/153307-MS
Valbuena, E., and Barrufet, M. A generalized partial molar volume algorithm provides fast estimates of CO2 storage capacity in depleted oil and gas reservoirs. Fluid Phase Equilibria, 359, 45-53, 2013.
Vega, L., Barrufet, M.A. Analysis of a non-volumetric gas-condensate reservoir. Society of Petroleum Engineers, 2001.
Vo, D.T., Jones, J.R., Camacho-V., R.G., Raghavan, R. A unified treatment of materials balance computations. Society of Petroleum Engineers, 1990. doi: 10.2118/21567-MS
Walsh, M.P., Ansah, J., Raghavan, R. The new, generalized material balance as an equation of a straight line: part 1 - applications to undersaturated, volumetric reservoirs. Society of Petroleum Engineers, 1994. doi: 10.2118/27684-MS
Walsh, M.P., Ansah, J., Raghavan, R. The new, generalized material balance as an equation of a straight line: part 2 - applications to saturated and non-volumetric Reservoirs. Society of Petroleum Engineers, 1994. doi: 10.2118/27728-MS
Walsh, M.P., Towler, B.F. Method computes PVT properties for gas condensates. Oil & Gas Journal, 93, 83-86. 1995.
Walsh, M. P. A Generalized approach to reservoir material balance calculations. Petroleum Society of Canada, 1995. doi: 10.2118/95-01-07
Whitson, C.H., Brulé, M.R. Phase Behavior, Vol. 20. Richardson, Texas: Monograph Series, SPE, 2000.
Whitson, C.H., Torp, S.B. Evaluating constant-volume depletion data. Society of Petroleum Engineers, 1983. doi: 10.2118/10067-PA
Wood, D.A. Carbon dioxide (CO2) handling and carbon capture utilization and sequestration (CCUS) research relevant to natural gas: a collection of published research (2009-2015). Journal of Natural Gas Science and Engineering, 25, A1-A9, July 2015.
Yuan, C., Zhang, Z., Liu, K. Assessment of the recovery and front contrast of CO2 EOR and sequestration in a new gas condensate reservoir by compositional simulation and seismic modeling, Fuel, 142, 81-86, 15 February 2015. http://dx.doi.org/10.1016/j.fuel.2014.10.045.
Zeidouni, M., Movazi, G.H., Pourghasem, B. Performance prediction of a rich gas/condensate reservoir through material balance and PVT behavior: a case study. Society of Petroleum Engineers, 2006. doi: 10.2118/99830-MS
Zendehboudi, S., Ahmadi, M.A., James L., Chatzis, I. Prediction of condensate-to-gas ratio for retrograde gas condensate reservoirs using artificial neural network with particle swarm optimization. Energy Fuels, 26 (6), 3432-3447, 2012.
http://world.yam.com/post.php?id=1809
http://www.abc.net.au/news/2014-03-04/marshall-tide/5298872
http://www.abc.net.au/news/2014-01-20/jakarta-floods/5207588
http://www.epa.gov.tw/ct.asp?xItem=10052&ctNode=31352&mp=epa
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-02-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw