進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1502201519011400
論文名稱(中文) 以穩定碳同位素定性空氣中花粉種類之可行性研究:以構樹為例
論文名稱(英文) Feasibility study for identification of pollen species by stable carbon isotope: the case in Broussonetia papyrifera pollen
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 103
學期 1
出版年 104
研究生(中文) 王文祺
研究生(英文) Wen-Chi Wang
學號 S76011017
學位類別 碩士
語文別 中文
論文頁數 103頁
口試委員 指導教授-蘇慧貞
口試委員-吳義林
口試委員-吳銘志
召集委員-張坤城
中文關鍵字 穩定碳同位素  構樹花粉 
英文關鍵字 Stable carbon isotope  Broussonetia papyrifera 
學科別分類
中文摘要 過去研究已證實大氣花粉種類和人體健康與氣象條件的改變息息相關,因此精確評估大氣花粉種類有其必要性。目前傳統的花粉採樣與鑑屬方法需耗費較多的人力與時間,連續性電子監測系統準確性不佳。回顧近年文獻發現花粉含有穩定碳同位素 (δ13C),且不同花粉種類的δ13C含量均不同;因此,本研究嘗試評估花粉中的δ13C含量是否適合用來定性大氣花粉種類。本研究以2006年1月-12月期間由Burkard Spore Traps (BST) 採集的台南市大氣花粉樣本為分析目標,並透過人工鑑屬方式鑑定花粉種類與濃度;Burkard Cyclone Sampler (BCS) 採樣器則被用於採集大氣微粒樣本,再以元素分析儀串聯同位素質譜儀分析微粒的δ13C含量。最後,以線性迴歸模式分析大氣花粉濃度和微粒中δ13C含量的關係,及分析環保署空氣品質監測站的氣象與污染物監測資料和δ13C含量的關係,以評估δ13C含量是否適合用於定性大氣花粉種類。
研究顯示台南市2006年優勢花粉為構樹花粉,花粉季發生在3-4月和8-10月,同一時間測得的微粒樣本δ13C含量分別為-26.37‰至-25.81‰和-27.32‰至-25.77‰,自植物採下的構樹花粉δ13C含量為-31.26‰,其值有明顯差異,且微粒中的δ13C含量和構樹花粉濃度相關性差;此外,高濃度PM2.5期間及各氣象因子條件下的構樹花粉濃度與微粒中δ13C含量相關偏低。然而,將樣本區分為花粉季和非花粉季後,研究發現花粉季期間的低PM2.5濃度、低濕度、低降雨量和高溫度期間之微粒中的δ13C含量和構樹花粉濃度之相關性統計顯著值 (p値) 趨近0.05,顯示花粉量、空氣污染和氣象因子均會影響δ13C的含量。由於過去研究指出氣象因子會影響植物生長特性,進而改變花粉δ13C含量,而空氣污染物 (VOCs、PAHs、生質燃燒等有機化學物) 亦含有δ13C,可能也影響δ13C在花粉定性的應用。因此,本研究建議若能區別δ13C的來源及影響,仍有助於應用在大氣花粉種類的定性。
英文摘要 The study aim to identify pollen species in the atmosphere by stable carbon isotope (δ13C). Broussonetia papyrifera pollens and particulate matters were collected by Burkard Spore Trap and Burkard Cyclone sampler. EA-IrMS was used to analyze δ13C compositions of Broussonetia papyrifera pollens and particulate matters, and the difference of δ13C values in pollens and particulate matters was through by T-test. The associations among air pollution levels, meteorological factors, and δ13C compositions of Broussonetia papyrifera pollens and particulate matters were investigated. However, there were poor relationships between of levels of Broussonetia papyrifera pollen and δ13C compositions of particulate matters.
論文目次 目錄
中文摘要 II
Extended Abstract III
誌謝 VI
目錄 VIII
表目錄 X
圖目錄 XI
第一章 前言 13
1-1 研究緣起 13
1-2 研究目的 13
1-3 研究問題 13
第二章 文獻回顧 14
2-1 花粉的結構、特性及其影響 14
2-1-1花粉的結構與特性 14
2-1-2 花粉的健康危害 17
2-1-3 花粉對環境的影響 23
2-1-4 構樹花粉的形態與影響 24
2-2 花粉採樣與分析技術 25
2-3 穩定同位素 27
2-3-1 穩定同位素之特性 27
2-3-2 穩定同位素於環境科學領域之研究現況 28
2-4 穩定碳同位素與花粉之關係 30
2-5 大氣中的穩定碳同位素特性 33
第三章 研究材料與方法 34
3-1 研究架構 34
3-2 採樣地點及時間 35
3-3 花粉及懸浮微粒採樣方法 36
3-3-1 花粉採樣與鑑屬方法 36
3-3-2 懸浮微粒採樣方法 38
3-3-3 花粉收集及保存方法 39
3-4 穩定碳同位素分析方法 42
3-4-1樣本前處理方法 42
3-4-2樣本分析方法 44
3-4-3樣本品保品管 45
3-5 汙染事件日及氣象因子資料搜尋 48
3-5-1 汙染事件日定義及資料來源 48
3-5-2 氣象因子資料來源 48
3-6 統計分析方法 48
第四章 結果 49
4-1台南地區2006年大氣花粉濃度分佈 49
4-2懸浮微粒中穩定碳同位素含量分佈 53
4-3懸浮微粒中穩定碳同位素含量和構樹花粉濃度相關性 55
4-4 汙染事件日與微粒中穩定碳同位素含量相關性 58
第五章 討論 61
第六章 結論與建議 72
參考文獻 74
附錄 84
附錄一、Burkard 7 days recording volumetric spore traps 採樣器原理及構造介紹 85
附錄二、Burkard Cyclone採樣器原理及構造介紹 93
附錄三、2006年3月19日沙塵暴影響範圍報告 98
附錄四、2006年3月29日沙塵暴影響範圍報告 101




表目錄
表2-1 花粉與疾病及症狀間相關研究 20
表2-2常見的花粉採樣器 25
表2-3 花粉自動監測儀 26
表2-4 穩定同位素國際標準含量 28
表3-1 不同光合作用途徑之植物種類 46
表3-2 不同光合作用途徑之植物花粉δ13C含量 47
表4-1 本研究可鑑屬之植物花粉種類 50
表4-2 2006年大氣懸浮微粒δ13C含量 53
表4-3 各季節大氣微粒δ13C含量 (‰) 54
表4-4 構樹花季與非花季期間之構樹花粉濃度及微粒δ13C含量 55
表4-5 微粒低濃度與高濃度中構樹花粉濃度和穩定碳同位素含量關係 58
表4-6 不同氣象因子之構樹花粉濃度和穩定碳同位素含量關係 60
表5-1 BST與BCS採樣器採集的構樹花粉粒數及濃度比較表 70



圖目錄
圖2-1 花的構造 (外觀) 14
圖2-2 花粉內部構造 17
圖2-3 花粉形成過程 17
圖2-4 全球氣候變異與氣喘盛行率和嚴重性的相關性分析 23
圖2-5 西方樺 (Betula occidentalis)花粉在不同相對濕度下的環境掃描式電子顯微鏡(ESEM)圖像:(A)68%、(B)84%、(C)91%、(D)93%、(E)95%、(F)96% 24
圖2-6 穩定碳同位素於不同物種和環境中的含量分佈 29
圖2-7 穩定氫、氮、硫和氧同位素於不同物種和環境中的含量分佈 30
圖2-8 不同植物種類的長期花粉δ13C含量變化 32
圖2-9 不同種類植物的花粉碳與氮穩定同位素含量 32
圖3-1 研究架構圖 35
圖3-2 採樣器設置位置和鄰近交通道路衛星圖 36
圖3-3 Burkard 7 day recording volumetric spore traps採樣器 37
圖3-4 Burkard spore traps 採樣器中的圓鼓 37
圖3-5 Burkard 7 day recording volumetric spore traps採樣示意圖 37
圖3-6 構樹花粉於光學顯微鏡下之形態 (1000倍) 38
圖3-7 Burkard cyclone sampler採樣器 39
圖3-8 構樹各部位之形態 40
圖3-9 麵包樹之形態 41
圖3-10 構樹雄花序 42
圖3-11 麵包樹雄花序 42
圖3-12 2ml polypropylene mesh collection tube圖示 43
圖3-13 已過濾雜質完畢後的花粉樣本 (含有濾紙的column) 44
圖3-14 錫杯 44
圖4-1 台南地區2006年花粉濃度統計圖 51
圖4-2 構樹花粉濃度與懸浮微粒δ13C含量時間趨勢圖 56
圖4-3各季節微粒δ13C含量與構樹花粉濃度關係 57
圖4-4 花粉季與非花粉季之構樹花粉濃度與微粒δ13C含量關係 57
圖5-1 2006年台南地區逆軌跡圖 63
圖5-2 2006年5、6月台南地區逆軌跡圖 64
圖5-3 2006年及2014年溫度及濕度趨勢 68
圖5-4 同位素儀器分析及其流程示意圖 71
圖6-1 光學顯微鏡下的構樹花粉型態 73
圖6-2 掃描式電子顯微鏡下的構樹花粉型態 73
參考文獻 參考文獻
Ariano R, Canonica GW, Passalacqua G. 2010. Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Ann Allerg Asthma Im 104:215-222.
Beggs PJ. 2004. Impacts of climate change on aeroallergens: Past and future. Clin Exp Allergy 34:1507-1513.
Beggs PJ, Bambrick HJ. 2005. Is the global rise of asthma an early impact of anthropogenic climate change? Environmental health perspectives 113:915-919.
Bendle JA, Kawamura K, Yamazaki K. 2006. Seasonal changes in stable carbon isotopic composition of n-alkanes in the marine aerosols from the western north pacific: Implications for the source and atmospheric transport. Geochim Cosmochim Ac 70:13-26.
Brunekreef B, Hoek G, Fischer P, Spieksma FTM. 2000. Relation between airborne pollen concentrations and daily cardiovascular and respiratory-disease mortality. Lancet 355:1517-1518.
Bundke U, Reimann B, Nillius B, Jaenicke R, Bingemer H. 2010. Development of a bioaerosol single particle detector (bio in) for the fast ice nucleus chamber finch. Atmos Meas Tech 3:263-271.
Cao JJ, Chow JC, Tao J, Lee SC, Watson JG, Ho KF, et al. 2011. Stable carbon isotopes in aerosols from chinese cities: Influence of fossil fuels. Atmos Environ 45:1359-1363.
Cecchi L, D'Amato G, Ayres JG, Galan C, Forastiere F, Forsberg B, et al. 2010. Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy 65:1073-1081.
Cirera L, Garcia-Marcos L, Gimenez J, Moreno-Grau S, Tobias A, Perez-Fernandez V, et al. 2012. Daily effects of air pollutants and pollen types on asthma and copd hospital emergency visits in the industrial and mediterranean spanish city of cartagena. Allergol Immunopath 40:231-237.
Cormie AB, Schwarcz HP, Gray J. 1994. Relation between hydrogen isotopic-ratios of bone-collagen and rain. Geochim Cosmochim Ac 58:377-391.
Darrow LA, Hess J, Rogers CA, Tolbert PE, Klein M, Sarnat SE. 2012. Ambient pollen concentrations and emergency department visits for asthma and wheeze. J Allergy Clin Immun 130:630-+.
Descolas-Gros C, Scholzel C. 2007. Stable isotope ratios of carbon and nitrogen in pollen grains in order to characterize plant functional groups and photosynthetic pathway types. New Phytol 176:390-401.
Despres VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, et al. 2012. Primary biological aerosol particles in the atmosphere: A review. Tellus B 64.
Diehl K, Quick C, Matthias-Maser S, Mitra SK, Jaenicke R. 2001. The ice nucleating ability of pollen - part i: Laboratory studies in deposition and condensation freezing modes. Atmos Res 58:75-87.
Ehleringer JR, Cerling TE, Helliker BR. 1997. C-4 photosynthesis, atmospheric co2 and climate. Oecologia 112:285-299.
Fisseha R, Spahn H, Wegener R, Hohaus T, Brasse G, Wissel H, et al. 2009. Stable carbon isotope composition of secondary organic aerosol from beta-pinene oxidation. J Geophys Res-Atmos 114.
Fu PQ, Kawamura K, Chen J, Li J, Sun YL, Liu Y, et al. 2012. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over mt. Tai in the north china plain: An influence of biomass burning. Atmos Chem Phys 12:8359-8375.
Ghosh D, Chakraborty P, Gupta J, Biswas A, Roy I, Das S, et al. 2012. Associations between pollen counts, pollutants, and asthma-related hospital admissions in a high-density indian metropolis. J Asthma 49:792-799.
Glaser B, Dreyer A, Bock M, Fiedler S, Mehring M, Heitmann T. 2005. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in bayreuth (germany) using biomarker and stable carbon isotope signatures. Environ Sci Technol 39:3911-3917.
Gorka M, Zwolinska E, Malkiewicz M, Lewicka-Szczebak D, Jedrysek MO. 2012. Carbon and nitrogen isotope analyses coupled with palynological data of pm10 in wroclaw city (sw poland) - assessment of anthropogenic impact. Isot Environ Healt S 48:327-344.
Grocke DR. 2002. The carbon isotope composition of ancient co2 based on higher-plant organic matter. Philos T Roy Soc A 360:633-658.
Healy DA, O'Connor DJ, Burke AM, Sodeau JR. 2012a. A laboratory assessment of the waveband integrated bioaerosol sensor (wibs-4) using individual samples of pollen and fungal spore material. Atmos Environ 60:534-543.
Healy DA, O'Connor DJ, Sodeau JR. 2012b. Measurement of the particle counting efficiency of the "waveband integrated bioaerosol sensor" model number 4 (wibs-4). J Aerosol Sci 47:94-99.
Healy DA, Huffman JA, O'Connor DJ, Pohlker C, Poschl U, Sodeau JR. 2014. Ambient measurements of biological aerosol particles near killarney, ireland: A comparison between real-time fluorescence and microscopy techniques. Atmos Chem Phys 14:8055-8069.
Hobson KA, Wassenaar LI. 2001. Isotopic delineation of north american migratory wildlife populations: Loggerhead shrikes. Ecol Appl 11:1545-1553.
Hoefs J. 2004. Stable isotope geochemistry.
Hoefs J. 2009. Stable isotope geochemistry. Berlin, Heidelberg : Springer Berlin Heidelberg.
Huang T-C. 1972. Pollen flora of taiwan.
Huang T-C. 1998. Aeropollen of the pingtung area, south taiwan. Taiwania 43:73-100.
Huffman JA, Treutlein B, Poschl U. 2010. Fluorescent biological aerosol particle concentrations and size distributions measured with an ultraviolet aerodynamic particle sizer (uv-aps) in central europe. Atmospheric Chemistry and Physics 10:3215-3233.
Hussain MM, Mandal J, Bhattacharya K. 2013. Airborne load of cassia pollen in west bengal, eastern india: Its atmospheric variation and health impact. Environmental monitoring and assessment 185:2735-2744.
Jahren AH. 2004. The carbon stable isotope composition of pollen. Rev Palaeobot Palyno 132:291-313.
Jung J, Kawamura K. 2011. Springtime carbon emission episodes at the gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles. Atmos Chem Phys 11:10911-10928.
Kettle AJ, Andreae MO. 2000. Flux of dimethylsulfide from the oceans: A comparison of updated data seas and flux models. J Geophys Res-Atmos 105:26793-26808.
Kim SH, Park HS, Jang JY. 2011. Impact of meteorological variation on hospital visits of patients with tree pollen allergy. Bmc Public Health 11.
Kimitaka K, Minoru K, Nobuyuki T, Michihiro M, Tomomi W, Lee MH. 2004. Organic and inorganic compositions of marine aerosols from east asia: Seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable c and n isotopic composition. The Geochemical Society Special Publications 9:243-265.
King DC, Schubert BA, Jahren AH. 2012. Practical considerations for the use of pollen delta c-13 value as a paleoclimate indicator. Rapid Commun Mass Spectrom 26:2165-2172.
Kundu S, Kawamura K. 2014. Seasonal variations of stable carbon isotopic composition of bulk aerosol carbon from gosan site, jeju island in the east china sea. Atmos Environ 94:316-322.
Latorre C, Quade J, McIntosh WC. 1997. The expansion of c-4 grasses and global change in the late miocene: Stable isotope evidence from the americas. Earth Planet Sc Lett 146:83-96.
Levetin E. 2004. Methods for aeroallergen sampling. Curr Allergy Asthm R 4:376-383.
Li MC, Liu HY, Li LX, Yi XF, Zhu XJ. 2007. Carbon isotope composition of plants along altitudinal gradient and its relationship to environmental factors on the qinghai-tibet plateau. Pol J Ecol 55:67-78.
Li YB, Chen T, Zhang YF, An LZ. 2007. The relation of seasonal pattern in stable carbon compositions to meteorological variables in the leaves of sabina przewalskii kom. And sabina chinensis (lin.) ant. Environ Geol 51:1279-1284.
Loader NJ, Hemming DL. 2000. Preparation of pollen for stable carbon isotope analyses. Chem Geol 165:339-344.
Loader NJ, Hemming DL. 2001. Spatial variation in pollen delta c-13 correlates with temperature and seasonal development timing. Holocene 11:587-592.
Lovasi GS, O'Neil-Dunne JP, Lu JW, Sheehan D, Perzanowski MS, Macfaden SW, et al. 2013. Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a new york city birth cohort. Environmental health perspectives 121:494-500, 500e491-496.
Ma JY, Chen T, Qiang WY, Wang G. 2005. Correlations between foliar stable carbon isotope composition and environmental factors in desert plant reaumuria soongorica (pall.) maxim. J Integr Plant Biol 47:1065-1073.
Makra L, Matyasovszky I, Balint B. 2012. Association of allergic asthma emergency room visits with the main biological and chemical air pollutants. The Science of the total environment 432:288-296.
Makra L, Matyasovszky I, Balint B, Csepe Z. 2014. Association of allergic rhinitis or asthma with pollen and chemical pollutants in szeged, hungary, 1999-2007. Int J Biometeorol 58:753-768.
Matson SD, Rook L, Oms O, Fox DL. 2012. Carbon isotopic record of terrestrial ecosystems spanning the late miocene extinction of oreopithecus bambolii, baccinello basin (tuscany, italy). J Hum Evol 63:127-139.
Miyazaki Y, Fu PQ, Kawamura K, Mizoguchi Y, Yamanoi K. 2012. Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmos Chem Phys 12:1367-1376.
Mkoma SL, Kawamura K, Tachibana E, Fu PQ. 2014. Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: Sources and contribution from burning of c-3 and c-4 plants to organic aerosols. Tellus B 66.
Mohler O, DeMott PJ, Vali G, Levin Z. 2007. Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences 4:1059-1071.
Mullins J, Emberlin J. 1997. Sampling pollens. J Aerosol Sci 28:365-370.
Norman AL, Hopper JF, Blanchard P, Ernst D, Brice K, Alexandrou N, et al. 1999. The stable carbon isotope composition of atmospheric pahs. Atmos Environ 33:2807-2814.
O'Connor DJ, Healy DA, Hellebust S, Buters JTM, Sodeau JR. 2014. Using the wibs-4 (waveband integrated bioaerosol sensor) technique for the on-line detection of pollen grains. Aerosol Sci Tech 48:341-349.
Peng L, You Y, Bai ZP, Zhu T, Xie KC, Feng YC, et al. 2006. Stable carbon isotope evidence for origin of atmospheric polycyclic aromatic hydrocarbons in zhengzhou and urumchi, china. Geochem J 40:219-226.
Pope FD. 2010. Pollen grains are efficient cloud condensation nuclei. Environ Res Lett 5.
Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. 2007. Glossary of pollen and spore terminology. Rev Palaeobot Palyno 143:1-81.
Ridolo E, Albertini R, Giordano D, Soliani L, Usberti I, Dall'Aglio PP. 2007. Airborne pollen concentrations and the incidence of allergic asthma and rhinoconjunctivitis in northern italy from 1992 to 2003. International archives of allergy and immunology 142:151-157.
Rodriguez-Rajo FJ, Jato V, Gonzalez-Parrado Z, Elvira-Rendueles B, Moreno-Grau S, Vega-Maray A, et al. 2011. The combination of airborne pollen and allergen quantification to reliably assess the real pollinosis risk in different bioclimatic areas. Aerobiologia 27:1-12.
Schubert BA, Jahren AH. 2012. The effect of atmospheric co2 concentration on carbon isotope fractionation in c-3 land plants. Geochim Cosmochim Ac 96:29-43.
Sharp Z. 2007. Principles of stable isotope geochemistry. Upper Saddle River, NJ : Pearson Education:154.
Shea KM, Truckner RT, Weber RW, Peden DB. 2008. Climate change and allergic disease. J Allergy Clin Immun 122:443-453.
Shripad N. Agashe EC. 2009. Pollen and spores : Applications with special emphasis on aerobiology and allergy Enfield, NH : Science Publishers.
Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG. 2005. Increasing amb a 1 content in common ragweed (ambrosia artemisiifolia) pollen as a function of rising atmospheric co2 concentration. Funct Plant Biol 32:667-670.
Skrzypek G, Kaluzny A, Jedrysek MO. 2007. Carbon stable isotope analyses of mosses - comparisons of bulk organic matter and extracted nitrocellulose. J Am Soc Mass Spectrom 18:1453-1458.
Skrzypek G, Baranowska-Kacka A, Keller-Sikora A, Jedrysek MO. 2009. Analogous trends in pollen percentages and carbon stable isotope composition of holocene peat - possible interpretation for palaeoclimate studies. Rev Palaeobot Palyno 156:507-518.
Sun JM, Ariya PA. 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (ccn): A review. Atmos Environ 40:795-820.
Teller A, Levin Z. 2006. The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos Chem Phys 6:67-80.
Toprak E, Schnaiter M. 2013. Fluorescent biological aerosol particles measured with the waveband integrated bioaerosol sensor wibs-4: Laboratory tests combined with a one year field study. Atmospheric Chemistry and Physics 13:225-243.
Tosi A, Wuthrich B, Bonini M, Pietragalla-Kohler B. 2011. Time lag between ambrosia sensitisation and ambrosia allergy. Swiss Med Wkly 141.
Turner N, Jones M, Grice K, Dawson D, Ioppolo-Armanios M, Fisher SJ. 2006. Delta c-13 of volatile organic compounds (vocs) in airborne samples by thermal desorption-gas chromatography-isotope ratio-mass spectrometry (td-gc-ir-ms). Atmos Environ 40:3381-3388.
Ulevicius V, Bycenkiene S, Remeikis V, Garbaras A, Kecorius S, Andriejauskiene J, et al. 2010. Characterization of pollution events in the east baltic region affected by regional biomass fire emissions. Atmos Res 98:190-200.
Wassenaar LI, Hobson KA. 1998. Natal origins of migratory monarch butterflies at wintering colonies in mexico: New isotopic evidence. P Natl Acad Sci USA 95:15436-15439.
Widory D, Roy S, Le Moullec Y, Goupil G, Cocherie A, Guerrot C. 2004. The origin of atmospheric particles in paris: A view through carbon and lead isotopes. Atmos Environ 38:953-961.
Williams CG. 2013. Forest tree pollen dispersal via the water cycle. Am J Bot 100:1184-1190.
Yin Y, Levin Z, Reisin TG, Tzivion S. 2000. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds - a numerical study. Atmos Res 53:91-116.
Zanforlin M, Incorvaia C. 2004. A case of pollinosis to broussonetia papyrifera. Allergy 59:1136-1137.
Zhou B, Zheng HB, Yang WG, Taylor D, Lu YH, Wei GJ, et al. 2012. Climate and vegetation variations since the lgm recorded by biomarkers from a sediment core in the northern south china sea. J Quaternary Sci 27:948-955.
易希道, 許志超, 李春序, 謝萬權, 宋世謹, 周惠慈. 1980. 普通植物學. 國立編譯館出版.
林維屏. 2008. 台灣南部地區大氣中構樹花粉濃度對呼吸道及過敏性疾病的影響. 國立成功大學 環境醫學研究所.
柯勇. 2002. 植物生理學. 藝軒圖書出版社 第八章 光合作用.
黃增泉. 1982. 孢粉學大觀. 國立編譯館出版.
黃增泉. 1998. 臺灣空中孢粉誌. 臺北市 : 臺灣大學植物學研究所.
葉育材. 1982. 光合作用-植物生產力的生理基礎. 國立編譯館出版社 第三篇 光合作用的生物化學
行政院環境保護署中國大陸沙塵監測網. 2006. 沙塵資料庫. Available: http://taqm.epa.gov.tw/dust/tw/Database.aspx
行政院環境保護署空氣品質監測網. 2006. 歷年監測資料下載. Available: http://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx
行政院環境保護署. 2012. 空氣汙染防制法規. Available: http://ivy5.epa.gov.tw/epalaw/
認識植物. 麵包樹介紹. Available: http://kplant.biodiv.tw/

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-02-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw