進階搜尋


下載電子全文  
系統識別號 U0026-1502201109114700
論文名稱(中文) 不同缝線技術、矽凝膠、遠紅外線照射與生醫材料對大鼠皮膚癒合力學性質的影響
論文名稱(英文) Impact of Different Suturing Methods, Topical Application of Silicone Gel, Far-infrared Ray Exposure and Biomaterial Injections on the Mechanical Properties of Healing Skin in Rats
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 1
出版年 100
研究生(中文) 楊正三
研究生(英文) Cheng-San Yang
學號 p8896117
學位類別 博士
語文別 英文
論文頁數 71頁
口試委員 指導教授-葉明龍
口試委員-黃玲惠
口試委員-徐阿田
口試委員-謝式洲
口試委員-陳嘉炘
口試委員-林真福
口試委員-林鼎勝
中文關鍵字 遠紅外光  可注射生物材料  恢復指數  矽凝膠  縫合方法  抗拉強度  傷口癒合 
英文關鍵字 Far-infrared ray (FIR)  Injectable biomaterials  Recovery index (RI)  Silicone gel  Suture methods  Tensile strength (TS)  Wound healing 
學科別分類
中文摘要 傷口癒合的過程是一個複雜的生物反應,包括發炎,增生,和重塑的階段。在過去研究中,許多物理和化學治療方法被大量研究,企圖找出影響傷口癒合的機制和改善癒合的關鍵因子。然而,大部分的研究以外觀和組織觀察,來評估治療方法的效用,卻少有研究,使用抗拉強度換算的癒合指數來量化傷口癒合的品質,其中癒合指數可用來正規化不同的生長條件的老鼠。因此,我們提出了一連串的研究,在大鼠切口模型來探討縫合方法、矽凝膠、遠紅外線照射、注射生物材料(膠原蛋白,透明質酸,明膠)的影響。在Sprague-Dawley大鼠背部分4個區域,其中1處作為控制組,其他3處切2公分的傷口並縫合,作為實驗組。經過不同的治療方法干預後,在1,2,4,6週將皮膚取下作拉伸測試和H&E染色。結果顯示,簡單的縫合方式、矽凝膠治療,對皮膚癒合過程有較佳的力學性質。而在前兩週的遠紅外線治療,可增加皮膚的抗拉強度。總而言之,其結果表明,縫線材料越穩固、縫合方法越簡單,癒合傷口的力學性能就越大。此外,矽凝膠治療組相較於較未治療組,其發炎細胞較少,表皮有更好的完整性在,以及較好的力學強度。遠紅外線能提供短期的力學強度,但其效果在較長時間則減弱。另外,玻尿酸注射組比膠原蛋白和明膠有較高的力學強度。
英文摘要 The wound healing process is a set of complicated and concurrent biological responses, which includes inflammation, proliferation, and remodeling phases. In the past, many physical and chemical treatments have been intensively studied in order to find the key factors that affect the mechanisms of wound healing and to improve healing. However, most of these studies used gross appearances and histology observations to evaluate the efficacy of the novel treatments. Only limited studies quantified the healing process using the mechanical recovery index (RI), which was introduced to normalize the different growth conditions of individual rats. Therefore, this study proposed a series of studies that investigated the mechanical recovery influences of suture methods, topical silicone gel, far-infrared ray (FIR) exposure, and injectable biomaterials (collagen, hyaluronic acid (HA), and gelatin) in rats used as models of incision injury. The dorsum of each the Sprague-Dawley rats was divided into four regions. The rats were randomly assigned, with one group of rats assigned to the normal group and the others to experimental groups with two centimeter long cuts and full-thickness skin suture closures. Following different treatment protocols, the skins were harvested for tensile testing and H&E stain at 1, 2, 4, and 6 weeks of healing time. The results showed that the simple suture method, the use of silicon gel, and HA injection groups provided better mechanical properties for the healing courses. FIR increased the tensile strength (TS) 2 weeks after injury. In conclusion, the results of suture methods indicated that the more supportive the suture materials are and the simpler the suture method is, the higher the mechanical property it will have. Besides, the wound treated with topical silicone gel had fewer inflammatory cells, higher integrity in the epidermis, and better mechanical strength than untreated groups. The FIR exposure enhances the RI of skin in the short term, but its effect diminished in the longer period. HA injection groups had higher mechanical strength than collagen and gelatin groups.
論文目次 ABSTRACT III
中文摘要 V
ACKNOWLEDGEMENTS VI
TABLE OF CONTENTS VII
LIST OF TABLES IX
LIST OF FIGURES X
1. BACKGROUNDS 1
1.1 WOUND HEALING PROCESS 1
1.1.1 Inflammatory phase 1
1.1.2 Proliferation phase 3
1.1.3 Remodeling phase 3
1.2 TYPES OF WOUND MODELS 3
1.3 LITERATURE REVIEWS 5
1.3.1 The Effect of Suture Methods on Wound Healing 5
1.3.2 The Effect of Silicone Gel on Wound Healing 7
1.3.3 The Effect of FIR on Wound Healing 9
1.3.4 The Effect of Biomaterial Injections on Wound Healing 10
1.4 PURPOSE OF STUDY 13
2. MATERIALS AND METHODS 15
2.1 ANIMAL EXPERIMENT 15
2.1.1 Different Suture Methods 15
2.1.2 Topical Silicone Gel 16
2.1.3 FIR 17
2.1.4 Biomaterial Injections 18
2.2 SOFT TISSUE TENSILE TEST 19
2.3 HISTOLOGY 21
2.4 STATISTICAL ANALYSIS 21
3. RESULTS 23
3.1 DIFFERENT SUTURE METHODS 23
3.2 TOPICAL SILICONE GEL 27
3.3 FIR EXPOSURE 33
3.3.1 Mechanical property of wound treated with FIR 33
3.3.2 Characteristics of Rats 36
3.3.3 TS of Unwound Skin treated with FIR 37
3.3.4 Histology 38
3.4 BIOMATERIAL INJECTIONS 41
3.5 RI FOR ALL TREATMENTS 45
4. DISCUSSION 47
4.1 DIFFERENT SUTURE METHODS 47
4.2 TOPICAL SILICONE GEL 48
4.3 FIR EXPOSURE 50
4.4 BIOMATERIAL INJECTIONS 54
4.5 LIMITATIONS 56
5. CONCLUSIONS 58
6. FUTURE WORKS 60
7. REFERENCES 61
8. BIOGRAPHY 67
9. PUBLICATION LIST 68
參考文獻 1. Cohen IK, McCoy BJ, Diegelmann RF. An update on wound healing. Ann Plast Surg. Sep 1979;3(3):264-272.
2. Martin P. Wound healing--aiming for perfect skin regeneration. Science. Apr 4 1997;276(5309):75-81.
3. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. Dec 2000;5(1):40-46.
4. Davidson JM. Animal models for wound repair. Arch Dermatol Res. Jul 1998;290 Suppl:S1-11.
5. Sumpio BE, Widmann MD. Enhanced production of endothelium-derived contracting factor by endothelial cells subjected to pulsatile stretch. Surgery. Aug 1990;108(2):277-281; discussion 281-272.
6. Gibson T. Physical properties of skin. J Anat. Jul 1969;105(Pt 1):183-184.
7. Larrabee WF, Jr., Holloway GA, Jr., Sutton D. Wound tension and blood flow in skin flaps. Ann Otol Rhinol Laryngol. Mar-Apr 1984;93(2 Pt 1):112-115.
8. Bucalo BD, Iriondo M. Photoelastic models of wound closure stress. Dermatol Surg. Mar 1995;21(3):210-212.
9. Pietramaggiori G, Liu P, Scherer SS, et al. Tensile forces stimulate vascular remodeling and epidermal cell proliferation in living skin. Ann Surg. Nov 2007;246(5):896-902.
10. Costa AM, Peyrol S, Porto LC, Comparin JP, Foyatier JL, Desmouliere A. Mechanical forces induce scar remodeling. Study in non-pressure-treated versus pressure-treated hypertrophic scars. Am J Pathol. Nov 1999;155(5):1671-1679.
11. Reno F, Sabbatini M, Lombardi F, et al. In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars. Wound Repair Regen. Sep-Oct 2003;11(5):331-336.
12. Morin G, Rand M, Burgess LP, Voussoughi J, Graeber GM. Wound healing: relationship of wound closing tension to tensile strength in rats. Laryngoscope. Aug 1989;99(8 Pt 1):783-788.
13. Levenson SM, Geever EF, Crowley LV, Oates JF, 3rd, Berard CW, Rosen H. The Healing of Rat Skin Wounds. Ann Surg. Feb 1965;161:293-308.
14. Gal P, Toporcer T, Vidinsky B, et al. Early changes in the tensile strength and morphology of primary sutured skin wounds in rats. Folia Biol (Praha). 2006;52(4):109-115.
15. Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids: a review. Plastic and reconstructive surgery. Oct 1999;104(5):1435-1458.
16. Mutalik S. Treatment of keloids and hypertrophic scars. Indian journal of dermatology, venereology and leprology. Jan-Feb 2005;71(1):3-8.
17. Zurada JM, Kriegel D, Davis IC. Topical treatments for hypertrophic scars. Journal of the American Academy of Dermatology. Dec 2006;55(6):1024-1031.
18. Chan KY, Lau CL, Adeeb SM, Somasundaram S, Nasir-Zahari M. A randomized, placebo-controlled, double-blind, prospective clinical trial of silicone gel in prevention of hypertrophic scar development in median sternotomy wound. Plastic and reconstructive surgery. Sep 15 2005;116(4):1013-1020; discussion 1021-1012.
19. Murison M, James W. Preliminary evaluation of the efficacy of dermatix silicone gel in the reduction of scar elevation and pigmentation. J Plast Reconstr Aesthet Surg. 2006;59(4):437-439.
20. Chernoff WG, Cramer H, Su-Huang S. The efficacy of topical silicone gel elastomers in the treatment of hypertrophic scars, keloid scars, and post-laser exfoliation erythema. Aesthetic plastic surgery. Sep-Oct 2007;31(5):495-500.
21. Signorini M, Clementoni MT. Clinical evaluation of a new self-drying silicone gel in the treatment of scars: a preliminary report. Aesthetic plastic surgery. Mar-Apr 2007;31(2):183-187.
22. Lacarrubba F, Patania L, Perrotta R, Stracuzzi G, Nasca MR, Micali G. An open-label pilot study to evaluate the efficacy and tolerability of a silicone gel in the treatment of hypertrophic scars using clinical and ultrasound assessments. The Journal of dermatological treatment. 2008;19(1):50-53.
23. Mustoe TA. Evolution of silicone therapy and mechanism of action in scar management. Aesthetic plastic surgery. Jan 2008;32(1):82-92.
24. Mercer NS. Silicone gel in the treatment of keloid scars. British journal of plastic surgery. Jan 1989;42(1):83-87.
25. Ishibashi J, Yamashita K, Ishikawa T, et al. The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Med Oncol. 2008;25(2):229-237.
26. Udagawa Y, Nagasawa H. Effects of far-infrared ray on reproduction, growth, behaviour and some physiological parameters in mice. In Vivo. Mar-Apr 2000;14(2):321-326.
27. Inoue S, Kabaya M. Biological activities caused by far-infrared radiation. Int J Biometeorol. Oct 1989;33(3):145-150.
28. Toyokawa H, Matsui Y, Uhara J, et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med (Maywood). Jun 2003;228(6):724-729.
29. Al-Watban FA. Laser Therapy Converts Diabetic Wound Healing to Normal Healing. Photomed Laser Surg. Feb 4 2009;27(1):127-135.
30. Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY, Wu CW. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed. Apr 2006;22(2):78-86.
31. Charkoudian N. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc. May 2003;78(5):603-612.
32. McCarthy RA, Hay ED. Collagen I, laminin, and tenascin: ultrastructure and correlation with avian neural crest formation. The International journal of developmental biology. Dec 1991;35(4):437-452.
33. Huang-Lee LL, Nimni ME. Crosslinked CNBr-activated hyaluronan-collagen matrices: effects on fibroblast contraction. Matrix Biol. Mar 1994;14(2):147-157.
34. King S. Catrix: an easy-to-use collagen treatment for wound healing. British journal of community nursing. Sep 2005;10(9):S31-34.
35. Singer AJ, Clark RA. Cutaneous wound healing. The New England journal of medicine. Sep 2 1999;341(10):738-746.
36. Lee SB, Jeon HW, Lee YW, et al. Bio-artificial skin composed of gelatin and (1-->3), (1-->6)-beta-glucan. Biomaterials. Jun 2003;24(14):2503-2511.
37. Courts FJ. Standardization and calibration in the evaluation of clinical performance. Journal of dental education. Dec 1997;61(12):947-950.
38. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. Journal of internal medicine. Jul 1997;242(1):27-33.
39. Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. Mar-Apr 1999;7(2):79-89.
40. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nature reviews. Jul 2004;4(7):528-539.
41. Yang CS, Yeh CH, Chen MY, Jiang CH, Su FC, Yeh ML. Mechanical evaluation of the influence of different suture methods on temporal skin healing. Dermatol Surg. Dec 2009;35(12):1880-1885.
42. Sanz LE, Patterson JA, Kamath R, Willett G, Ahmed SW, Butterfield AB. Comparison of Maxon suture with Vicryl, chromic catgut, and PDS sutures in fascial closure in rats. Obstet Gynecol. Mar 1988;71(3 Pt 1):418-422.
43. Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen. Nov-Dec 2004;12(6):591-599.
44. Schramm JM, Warner D, Hardesty RA, Oberg KC. A unique combination of infrared and microwave radiation accelerates wound healing. Plastic and reconstructive surgery. Jan 2003;111(1):258-266.
45. De Vries HJ, Zeegelaar JE, Middelkoop E, et al. Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br J Dermatol. May 1995;132(5):690-697.
46. Muehlberger T, Moresi JM, Schwarze H, Hristopoulos G, Laenger F, Wong L. The effect of topical tretinoin on tissue strength and skin components in a murine incisional wound model. J Am Acad Dermatol. Apr 2005;52(4):583-588.
47. Pellard S. An overview of the two widely accepted, but contradictory, theories on wound contraction. J Wound Care. Feb 2006;15(2):90-92.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-02-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-02-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw