進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1501202020453800
論文名稱(中文) 葉酸缺乏對神經脊細胞衍生之心臟與黑色素細胞發育的影響
論文名稱(英文) The impact of folate deficiency on the development of neural crest cells-derived tissues-the heart and melanocytes
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 108
學期 1
出版年 109
研究生(中文) 杜洪齊
研究生(英文) Hung-Chi Tu
學號 S58031174
學位類別 博士
語文別 英文
論文頁數 91頁
口試委員 指導教授-傅子芳
召集委員-邱文泰
口試委員-劉秉彥
口試委員-盧福翊
口試委員-李士傑
口試委員-莊永仁
口試委員-蔡懷楨
中文關鍵字 葉酸  斑馬魚  心臟  黑色素細胞  氧化壓力  多巴脫羧酸 
英文關鍵字 folate  zebrafish  heart  melanocyte  oxidative stress  dopa decarboxylase 
學科別分類
中文摘要 葉酸(維生素B9)對於穩定基因的正常表現、調控表觀遺傳以及維持胞內氧化還原平衡相當重要。研究證實葉酸缺乏會影響神經脊發育且與神經管缺損、先天性心臟病和巨球性貧血的發生相關,然而引發葉酸缺乏相關疾病的機制仍待研究。本研究利用可誘發葉酸缺乏的基因轉殖斑馬魚Tg(hsp:EGFP-γGH)來探討葉酸缺乏如何造成神經脊細胞衍生之心臟與黑色素細胞的發育缺陷。首先,我們探討葉酸缺乏對於斑馬魚循環系統發育的影響,包含心臟、造血及血管的發育。葉酸缺乏的斑馬魚胚胎出現血紅素量降低、紅血球數目減少、紅血球體積變大和c-myb訊號表現改變等紅血球生成異常現象,以及心臟腔室變小、心跳速率增加、心室射出分率減少和cmlc2訊號表現改變等心臟缺陷。給予葉酸缺乏的斑馬魚胚胎還原態葉酸(5-CHO-THF)或抗氧化劑(NAC)能減輕其造血及心臟的缺陷,然而核苷酸或Erk抑制劑的補充僅能緩解造血異常,而氧化態葉酸(FA)僅能緩解心臟缺陷。此研究突顯出因葉酸缺乏而異常增加的氧化壓力是導致斑馬魚胚胎造血及心臟缺陷的重要原因,而還原態葉酸對於緩解葉酸缺乏引發氧化壓力而導致的造血及心臟缺陷有較好的效果。接著,我們探討葉酸缺乏對黑色素細胞形態及功能的影響。黑色素細胞導致皮膚色素沈著是抵抗紫外光傷害不可或缺的機制。我們發現葉酸缺乏斑馬幼魚的皮膚黑色素細胞呈現黑色素減少、黑素體運送異常以及胞內黑色素異常分散的現象。給予葉酸缺乏斑馬幼魚5-CHO-THF補充可以緩解上述所列黑色素細胞的異常,然而補充FA僅能增加黑色素製造異常但無法改善黑素體運送功能。此外,葉酸缺乏斑馬幼魚胞內黑色素異常分散的現象可藉腎上腺素的補充改善。腎上腺素能透過刺激黑素體向細胞核週邊集中而調控胞內黑素體運送的平衡。透過給予腎上腺素及其前驅物並評估其對黑素體運送的矯正功能,同時分析斑馬幼魚腎上腺素及其前驅物含量,我們發現腎上腺素前驅物多巴胺的減少可能是導致葉酸缺乏斑馬幼魚胞內黑色素異常分散的原因。Dopa decarboxylase (Ddc)是合成多巴胺的酵素,而葉酸缺乏斑馬幼魚的Ddc表現減少。進一步對葉酸缺乏斑馬魚胚胎注射ddc表現質體可以改善其胞內黑色素異常分散的現象。上述發現顯示葉酸缺乏會導致黑色素細胞製造及運送黑色素的功能異常,同時揭示葉酸缺乏會藉由抑制Ddc的表現量導致胞內黑色素異常分散。鑒於葉酸缺乏導致黑色素細胞發育缺陷,我們進一步檢視葉酸含量對於紫外光傷害感受性的影響。葉酸缺乏斑馬幼魚在紫外光照射後產生相較對照組更顯著的尾鰭損傷及氧化壓力上升,顯示葉酸缺乏導致個體對紫外光傷害的敏感性增加。此外,5-CHO-THF對於減緩黑色素細胞缺陷以及紫外光傷害的能力優於FA。上述結果顯示,葉酸缺乏引發之發育缺陷的致病機轉是具組織特異性的。此外,在減緩葉酸缺乏引發之發育缺陷上,補充5-CHO-THF的效果優於FA,顯示出5-CHO-THF與FA的生物有效性是有差異的。
英文摘要 Folate (vitamin B9) is crucial for genome stability, epigenetic regulation and redox balance. Folate deficiency (FD) impedes neural crest development and has been correlated with many diseases such as neural tube defects (NTDs), congenital heart diseases (CHDs) and megaloblastic anemia. However, the mechanisms underlying these FD-associated disorders remain elusive. In this study, how FD impairs the development of heart and melanocyte, two of the neural crest lineages, was examined using FD-inducible zebrafish transgenic line Tg(hsp:EGFP-γGH). In the first part of this study, the impact of FD on circulation development, including cardiac development, hematopoiesis, and vascular integrity was examined. We found impaired hematopoiesis including decreased hemoglobin level, reduced erythrocyte number, enlarged erythrocyte size and altered c-myb expression, as well as cardiac defects including smaller chamber size, increased heart rate, reduced ejection fraction and altered cmlc2 expression in FD embryos/larvae. Treating FD embryos with reduced form of folate, 5-formyltetrahydrofolate (5-CHO-THF) or antioxidant N-acetyl-L-cysteine (NAC) ameliorated both hematopoietic and cardiac defects, whereas nucleotide or Erk inhibitor ameliorated only the hematopoietic defects and the oxidized form of folate, folic acid (FA) ameliorated only the cardiac defects. These findings highlight the role of excessive oxidative stress in mediating FD-induced hematopoietic and cardiac defects, and demonstrate that folate with reducing power serves as a better reliever to oxidative stress-dependent hematopoietic and cardiac defects resulted from FD. In the second part of this study, the impact of FD on the morphology and function of melanocytes was examined. Melanocytes are the foundation of pigmentation and therefore indispensable for protecting organisms from ultraviolet (UV)-inflicted damage. Maldevelopment of skin melanocytes including decreased melanogenesis, reduced melanosome anterograde response and aberrant melanin dispersion was observed in FD larvae. Treating FD larvae with 5-CHO-THF relieved both melanogenesis and melanosome transportation defects while FA failed to rescue the melanosome anterograde defects. The aberrant melanin dispersion could be readily rectified when treating FD larvae with epinephrine, one of the melanosome retrograde stimulus involved in the homeostasis of intracellular melanosome transportation. Further examination of the melanocyte retrograde response and metabolite levels of epinephrine and its precursors suggested that reduced synthesis of dopamine, a precursor of epinephrine, contributes to the aberrant melanin dispersion observed in FD larvae. Dopa decarboxylase (Ddc) is the enzyme catalyzing dopamine synthesis from L-dopa. Decreased Ddc expression in both transcript and protein levels was observed in FD larvae. Through injecting FD embryos with ddc construct, the aberrant melanin dispersion was ameliorated. These results demonstrate that FD impairs melanogenesis and melanosome transportation, and reveal for the first time that down-regulated Ddc contributes to the aberrant melanin dispersion resulted from FD. Along with the finding that FD disturbs melanocyte development, the impact of folate statue on the vulnerability to UVB irradiation was investigated. In comparison to control larvae, FD larvae displayed more significant tail fin damage and ROS elevation after UVB irradiation, indicating that FD leads to an increased susceptibility to UVB irradiation. 5-CHO-THF, in concordance with its efficacy in relieving melanocyte defects, exerts better protection effects in ameliorating UVB-inflicted damage than FA. Taken together, these results demonstrate tissue-specific pathomechanisms resulted from FD. Moreover, the finding that 5-CHO-THF surpasses FA in relieving FD-inflicted developmental defects suggests that the biological availability is different between 5-CHO-THF and FA.
論文目次 CONTENT
ABSTRACT ..........................................I
摘要.............................................III
ACKNOWLEDGEMENT ................................. V
CONTENT OF FIGURES AND TABLES ........................ X
ABBREVIATION.................................... XII
GENERAL INTRODUCTION .............................. 1
Folate .......................................... 1
Clinical significance of folate.............................. 1
Folate and the development of neural crest cells.................. 5
Zebrafish ........................................ 5
Zebrafish in nutrient-related studies......................... 6
MATERIALS AND METHODS.............................. 7
Materials ........................................ 7
Zebrafish line and maintenance........................... 8
Induction of folate deficiency ............................. 8
Compound treatment.................................. 8
Hemoglobin staining ................................. 9
Erythrocyte analysis.................................. 9
Zebrafish larval cryostat sectioning .......................... 9
Whole mount in situ hybridization .......................... 10
Cardiac function analysis ............................... 10
Homocysteine quantification............................ 11
Melanin measurement................................. 11
RNA isolation, reverse transcription and polymerase chain reaction...... 11
Melanosome transportation assay ......................... 11
Evaluation of melanosome retrograde extent................... 12
Zebrafish metabolite analysis............................. 12
Zebrafish Ddc protein expression.......................... 14
Zebrafish ddc construct for rescue .......................... 14
Touch response analysis ............................... 14
UV exposure..................................... 15
Reactive oxygen species assay ............................ 15
Total antioxidant capacity assay .......................... 15
Statistical analysis ................................... 16
RESEARCH GOALS.................................... 17
PART I ........................................... 18
The impact of folate deficiency on the development of zebrafish heart and circulation system* ........................................... 18
INTRODUCTION ................................... 18
Folate deficiency and circulation defects ...................... 18
Zebrafish in the studies of circulation development ................ 18
Folate, oxidative stress and circulation defects .................. 19
Folate, ERK signaling and circulation defects ................... 19
SPECIFIC AIMS..................................... 20
RESULTS......................................... 21
Folate deficiency impaired cardiac development ................. 21
Folate deficiency altered the expression pattern of cmlc2 ............. 21
Folate deficiency impeded erythropoiesis ..................... 24
Folate deficiency altered the expression pattern of c-myb............. 24
Folate-deficient larvae showed no significant anomalies on vascular development ............................................. 28
Antioxidant ameliorated the hematopoietic and cardiac defects in folate-deficient larvae .......................................... 31
Erk inhibitor alleviated the defective hematopoiesis in folate-deficient larvae. 31
Nucleotide supplement restored the hemoglobin level in folate-deficient larvae 31
Folic acid supplement did not restore the hemoglobin level in folate-deficient larvae .......................................... 32
DISCUSSION ...................................... 34
PART II.......................................... 37
The impact of folate deficiency on the development of zebrafish melanocytes* ... 37
INTRODUCTION ................................... 37
Melanocytes...................................... 37
Cutaneous pigmentation ............................... 37
Folate and skin melanocytes............................. 38
Zebrafish in the studies of melanocyte biology................... 39
Dopa decarboxylase .................................. 39
SPECIFIC AIMS..................................... 41
RESULTS......................................... 42
Folate-deficient larvae displayed reduced melanin synthesis ........... 42
Folate-deficient larvae displayed aberrant melanin dispersion.......... 42
Melanosome retrograde response induced by dopamine, norepinephrine and epinephrine ameliorated the aberrant melanin dispersion observed in folate- deficient larvae..................................... 47
The expression of dopa decarboxylase was decreased in folate-deficient larvae 50
Restoring Ddc expression ameliorated the aberrant melanin dispersion in folate- deficient larvae..................................... 50
PLP supplementation rescued the melanin synthesis and motor response in folate-deficient larvae................................ 54
Folate supplementation ameliorated the UVB-induced injury in wild-type larvae ............................................. 54
Folate-deficient larvae displayed increased vulnerability to UVB-inflicted damage. ........................................ 57
Folate-deficient larvae possessed decreased antioxidant capacity........ 57
Selective folate supplementation differentially protected FD larvae from UV- inflicted damage and oxidative stress ........................ 58
DISCUSSION ...................................... 63
REFERENCES ...................................... 68
APPENDIX ........................................ 81
AUTHOR ......................................... 91
參考文獻 1. Green, J.M. and R.G. Matthews, Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus, 2007. 2(2).
2. Fox, J.T. and P.J. Stover, Folate-mediated one-carbon metabolism. Vitam Horm, 2008. 79: p. 1-44.
3. Stover, P.J. and M.S. Field, Trafficking of intracellular folates. Adv Nutr, 2011. 2(4): p. 325-31.
4. Stover, P.J., One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr, 2009. 139(12): p. 2402-5.
5. Fan, J., J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, and J.D. Rabinowitz, Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014. 510(7504): p. 298-302.
6. Miller, A.L., The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern Med Rev, 2008. 13(3): p. 216-26.
7. Czeizel, A.E., I. Dudas, A. Vereczkey, and F. Banhidy, Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients, 2013. 5(11): p. 4760-75.
8. Bailey, L.B., P.J. Stover, H. McNulty, M.F. Fenech, J.F. Gregory, 3rd, J.L. Mills, C.M. Pfeiffer, Z. Fazili, M. Zhang, P.M. Ueland, A.M. Molloy, M.A. Caudill, B. Shane, R.J. Berry, R.L. Bailey, D.B. Hausman, R. Raghavan, and D.J. Raiten, Biomarkers of Nutrition for Development-Folate Review. J Nutr, 2015. 145(7): p. 1636s-1680s.
9. Robinson, N., P. Grabowski, and I. Rehman, Alzheimer's disease pathogenesis: Is there a role for folate? Mech Ageing Dev, 2018. 174: p. 86-94.
10. Green, R. and A. Datta Mitra, Megaloblastic Anemias: Nutritional and Other Causes. Med Clin North Am, 2017. 101(2): p. 297-317.
11. Stanhewicz, A.E. and W.L. Kenney, Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr Rev, 2017. 75(1): p. 61-70.
12. Pieroth, R., S. Paver, S. Day, and C. Lammersfeld, Folate and Its Impact on Cancer Risk. Curr Nutr Rep, 2018. 7(3): p. 70-84.
13. Kao, T.T., C.Y. Chu, G.H. Lee, T.H. Hsiao, N.W. Cheng, N.S. Chang, B.H. Chen, and T.F. Fu, Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish--implication in neural tube defects and Alzheimer's diseases. Neurobiol Dis, 2014. 71: p. 234-44.
14. Balashova, O.A., O. Visina, and L.N. Borodinsky, Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation. Development, 2017. 144(8): p. 1518-1530.
15. Keyte, A. and M.R. Hutson, The neural crest in cardiac congenital anomalies. Differentiation, 2012. 84(1): p. 25-40.
16. Howe, K., M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Churcher, C. Scott, J.C. Barrett, R. Koch, G.J. Rauch, S. White, W. Chow, B. Kilian, L.T. Quintais, J.A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J.H. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, S.F. Maguire, G.K. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida- King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Elliot, G. Threadgold, G. Harden, D. Ware, S. Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. Barker, C. Lloyd, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. Leongamornlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, S. Whitehead, M. Kay, J. Brown, C. Murnane, E. Gray, M. Humphries, N. Sycamore, D. Barker, D. Saunders, J. Wallis, A. Babbage, S. Hammond, M. Mashreghi-Mohammadi, L. Barr, S. Martin, P. Wray, A. Ellington, N. Matthews, M. Ellwood, R. Woodmansey, G. Clark, J. Cooper, A. Tromans, D. Grafham, C. Skuce, R. Pandian, R. Andrews, E. Harrison, A. Kimberley, J. Garnett, N. Fosker, R. Hall, P. Garner, D. Kelly, C. Bird, S. Palmer, I. Gehring, A. Berger, C.M. Dooley, Z. Ersan-Urun, C. Eser, H. Geiger, M. Geisler, L. Karotki, A. Kirn, J. Konantz, M. Konantz, M. Oberlander, S. Rudolph-Geiger, M. Teucke, C. Lanz, G. Raddatz, K. Osoegawa, B. Zhu, A. Rapp, S. Widaa, C. Langford, F. Yang, S.C. Schuster, N.P. Carter, J. Harrow, Z. Ning, J. Herrero, S.M. Searle, A. Enright, R. Geisler, R.H. Plasterk, C. Lee, M. Westerfield, P.J. de Jong, L.I. Zon, J.H. Postlethwait, C. Nusslein-Volhard, T.J. Hubbard, H. Roest Crollius, J. Rogers and D.L. Stemple, The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503.
17. McGrath, P. and C.Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today, 2008. 13(9-10): p. 394-401.
18. Liu, J., Y. Zhou, X. Qi, J. Chen, W. Chen, G. Qiu, Z. Wu, and N. Wu,
CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases
modeling. Hum Genet, 2017. 136(1): p. 1-12.
19. Traver, D., B.H. Paw, K.D. Poss, W.T. Penberthy, S. Lin, and L.I. Zon,
Transplantation and in vivo imaging of multilineage engraftment in zebrafish
bloodless mutants. Nat Immunol, 2003. 4(12): p. 1238-46.
20. Westerfield, M., The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish
Danio (" Brachydanio Rerio"). 2007: University of Oregon.
21. Detrich, H.W., 3rd, M.W. Kieran, F.Y. Chan, L.M. Barone, K. Yee, J.A.
Rundstadler, S. Pratt, D. Ransom, and L.I. Zon, Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci U S A, 1995. 92(23): p. 10713-7.
22. Agalou, A., M. Thrapsianiotis, A. Angelis, A. Papakyriakou, A.L. Skaltsounis, N. Aligiannis, and D. Beis, Identification of Novel Melanin Synthesis Inhibitors From Crataegus pycnoloba Using an in Vivo Zebrafish Phenotypic Assay. Front Pharmacol, 2018. 9: p. 265.
23. Snyder, J.R., A. Hall, L. Ni-Komatsu, S.M. Khersonsky, Y.T. Chang, and S.J. Orlow, Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol, 2005. 12(4): p. 477-84.
24. Peterson, S.M. and J.L. Freeman, RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. J Vis Exp, 2009(30).
25. Yen, H.J., M.K. Tayeh, R.F. Mullins, E.M. Stone, V.C. Sheffield, and D.C. Slusarski, Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. Hum Mol Genet, 2006. 15(5): p. 667-77.
26. Li, X.S., S. Li, P. Wynveen, K. Mork, and G. Kellermann, Development and validation of a specific and sensitive LC-MS/MS method for quantification of urinary catecholamines and application in biological variation studies. Anal Bioanal Chem, 2014. 406(28): p. 7287-97.
27. Santos-Fandila, A., E. Vazquez, A. Barranco, A. Zafra-Gomez, A. Navalon, R. Rueda, and M. Ramirez, Analysis of 17 neurotransmitters, metabolites and precursors in zebrafish through the life cycle using ultrahigh performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2015. 1001: p. 191-201.
28. Tufi, S., P. Leonards, M. Lamoree, J. de Boer, J. Legler, and J. Legradi, Changes in Neurotransmitter Profiles during Early Zebrafish (Danio rerio) Development and after Pesticide Exposure. Environ Sci Technol, 2016. 50(6): p. 3222-30.
29. Tu, H.C., G.H. Lee, T.H. Hsiao, T.T. Kao, T.Y. Wang, J.N. Tsai, and T.F. Fu, One crisis, diverse impacts-Tissue-specificity of folate deficiency-induced circulation defects in zebrafish larvae. PLoS One, 2017. 12(11): p. e0188585.
30. Sadowski, S.L., Congenital cardiac disease in the newborn infant: past, present, and future. Crit Care Nurs Clin North Am, 2009. 21(1): p. 37-48, vi.
31. Aslinia, F., J.J. Mazza, and S.H. Yale, Megaloblastic anemia and other causes of macrocytosis. Clin Med Res, 2006. 4(3): p. 236-41.
32. Paik, E.J. and L.I. Zon, Hematopoietic development in the zebrafish. Int J Dev Biol, 2010. 54(6-7): p. 1127-37.
33. Tu, S. and N.C. Chi, Zebrafish models in cardiac development and congenital heart birth defects. Differentiation, 2012. 84(1): p. 4-16.
34. Jing, L. and L.I. Zon, Zebrafish as a model for normal and malignant hematopoiesis. Dis Model Mech, 2011. 4(4): p. 433-8.
35. Gore, A.V., K. Monzo, Y.R. Cha, W. Pan, and B.M. Weinstein, Vascular development in the zebrafish. Cold Spring Harb Perspect Med, 2012. 2(5): p. a006684.
36. Stainier, D.Y., Zebrafish genetics and vertebrate heart formation. Nat Rev Genet, 2001. 2(1): p. 39-48.
37. Gliszczyńska-Świgło, A., Folates as antioxidants. Food Chemistry, 2007. 101(4): p. 1480-1483.
38. Stanger, O. and W. Wonisch, Enzymatic and non-enzymatic antioxidative effects of folic acid and its reduced derivates. Subcell Biochem, 2012. 56: p. 131-61.
39. Ghaffari, S., Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal, 2008. 10(11): p. 1923-40.
40. Pirinccioglu, A.G., O. Alyan, G. Kizil, M. Kangin, and N. Beyazit, Evaluation of oxidative stress in children with congenital heart defects. Pediatr Int, 2012. 54(1): p. 94-8.
41. Hobbs, C.A., M.A. Cleves, W. Zhao, S. Melnyk, and S.J. James, Congenital heart defects and maternal biomarkers of oxidative stress. Am J Clin Nutr, 2005. 82(3): p. 598-604.
42. Poli, G., G. Leonarduzzi, F. Biasi, and E. Chiarpotto, Oxidative stress and cell signalling. Curr Med Chem, 2004. 11(9): p. 1163-82.
43. Geest, C.R. and P.J. Coffer, MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol, 2009. 86(2): p. 237-50.
44. Rose, B.A., T. Force, and Y. Wang, Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev, 2010. 90(4): p. 1507-46.
45. Murakami, M. and M. Simons, Regulation of vascular integrity. J Mol Med (Berl), 2009. 87(6): p. 571-82.
46. Dhalla, N.S., R.M. Temsah, and T. Netticadan, Role of oxidative stress in cardiovascular diseases. J Hypertens, 2000. 18(6): p. 655-73.
47. Berndt, C., G. Poschmann, K. Stuhler, A. Holmgren, and L. Brautigam, Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells. Redox Biol, 2014. 2: p. 673-8.
48. Fukui, H., K. Terai, H. Nakajima, A. Chiba, S. Fukuhara, and N. Mochizuki, S1P- Yap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish. Dev Cell, 2014. 31(1): p. 128-36.
49. Escot, S., C. Blavet, S. Hartle, J.L. Duband, and C. Fournier-Thibault,
Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell
migration leading to conotruncal defects. Circ Res, 2013. 113(5): p. 505-16.
50. Dai, X., W. Jiang, Q. Zhang, L. Xu, P. Geng, S. Zhuang, B.G. Petrich, C. Jiang, L.
Peng, S. Bhattacharya, S.M. Evans, Y. Sun, J. Chen, and X. Liang, Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biol, 2013. 11: p. 107.
51. Kirby, M.L. and M.R. Hutson, Factors controlling cardiac neural crest cell migration. Cell Adh Migr, 2010. 4(4): p. 609-21.
52. Vermillion, K.L., K.A. Lidberg, and L.S. Gammill, Cytoplasmic protein methylation is essential for neural crest migration. J Cell Biol, 2014. 204(1): p. 95- 109.
53. Lin, S.H., J. Wang, P. Saintigny, C.C. Wu, U. Giri, J. Zhang, T. Menju, L. Diao, L. Byers, J.N. Weinstein, K.R. Coombes, L. Girard, R. Komaki, Wistuba, II, H. Date, J.D. Minna, and J.V. Heymach, Genes suppressed by DNA methylation in non- small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics, 2014. 15: p. 1079.
54. Gunawan, M., N. Venkatesan, J.T. Loh, J.F. Wong, H. Berger, W.H. Neo, L.Y. Li, M.K. La Win, Y.H. Yau, T. Guo, P.C. See, S. Yamazaki, K.C. Chin, A.R. Gingras, S.G. Shochat, L.G. Ng, S.K. Sze, F. Ginhoux, and I.H. Su, The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat Immunol, 2015. 16(5): p. 505-16.
55. Zhou, Y., J. Kim, X. Yuan, and T. Braun, Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res, 2011. 109(9): p. 1067-81.
56. Gilsbach, R., S. Preissl, B.A. Gruning, T. Schnick, L. Burger, V. Benes, A. Wurch, U. Bonisch, S. Gunther, R. Backofen, B.K. Fleischmann, D. Schubeler, and L. Hein, Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun, 2014. 5: p. 5288.
57. Serra-Juhe, C., I. Cusco, A. Homs, R. Flores, N. Toran, and L.A. Perez-Jurado,
DNA methylation abnormalities in congenital heart disease. Epigenetics, 2015.
10(2): p. 167-77.
58. Zhang, Q.J. and Z.P. Liu, Histone methylations in heart development, congenital
and adult heart diseases. Epigenomics, 2015. 7(2): p. 321-30.
59. Celik, H., A. Kramer, and G.A. Challen, DNA methylation in normal and
malignant hematopoiesis. Int J Hematol, 2016. 103(6): p. 617-26.
60. Smith, Z.D. and A. Meissner, DNA methylation: roles in mammalian development.
Nat Rev Genet, 2013. 14(3): p. 204-20.
61. Broske, A.M., L. Vockentanz, S. Kharazi, M.R. Huska, E. Mancini, M. Scheller, C.
Kuhl, A. Enns, M. Prinz, R. Jaenisch, C. Nerlov, A. Leutz, M.A. Andrade-Navarro, S.E. Jacobsen, and F. Rosenbauer, DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet, 2009. 41(11): p. 1207-15.
62. Trowbridge, J.J., J.W. Snow, J. Kim, and S.H. Orkin, DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell, 2009. 5(4): p. 442-9.
63. Tu, H.C., M.Y. Lin, C.Y. Lin, T.H. Hsiao, Z.H. Wen, B.H. Chen, and T.F. Fu,
Supplementation with 5-formyltetrahydrofolate alleviates ultraviolet B-inflicted oxidative damage in folate-deficient zebrafish. Ecotoxicol Environ Saf, 2019. 182: p. 109380.
64. Mort, R.L., I.J. Jackson, and E.E. Patton, The melanocyte lineage in development and disease. Development, 2015. 142(4): p. 620-32.
65. Yamaguchi, Y. and V.J. Hearing, Melanocytes and their diseases. Cold Spring Harb Perspect Med, 2014. 4(5).
66. Bush, W.D. and J.D. Simon, Quantification of Ca(2+) binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis. Pigment Cell Res, 2007. 20(2): p. 134-9.
67. Riley, P.A., Melanin. Int J Biochem Cell Biol, 1997. 29(11): p. 1235-9.
68. D'Orazio, J., S. Jarrett, A. Amaro-Ortiz, and T. Scott, UV radiation and the skin. Int
J Mol Sci, 2013. 14(6): p. 12222-48.
69. Goding, C.R. and H. Arnheiter, MITF-the first 25 years. Genes Dev, 2019. 33(15-
16): p. 983-1007.
70. Kawakami, A. and D.E. Fisher, The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest, 2017. 97(6): p. 649-656.
71. Levy, C., M. Khaled, and D.E. Fisher, MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med, 2006. 12(9): p. 406-14.
72. Forshew, T., S. Khaliq, L. Tee, U. Smith, C.A. Johnson, S.Q. Mehdi, and E.R. Maher, Identification of novel TYR and TYRP1 mutations in oculocutaneous albinism. Clin Genet, 2005. 68(2): p. 182-4.
73. Tassabehji, M., V.E. Newton, and A.P. Read, Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet, 1994. 8(3): p. 251-5.
74. Wu, X. and J.A. Hammer, Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol, 2014. 29: p. 1-7.
75. Park, H.Y., M. Kosmadaki, M. Yaar, and B.A. Gilchrest, Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci, 2009. 66(9): p. 1493-506.
76. Hasoun, L.Z., S.W. Bailey, K.K. Outlaw, and J.E. Ayling, Rearrangement and depletion of folate in human skin by ultraviolet radiation. Br J Dermatol, 2015.
173(4): p. 1087-90.
77. Jablonski, N.G. and G. Chaplin, Colloquium paper: human skin pigmentation as an
adaptation to UV radiation. Proc Natl Acad Sci U S A, 2010. 107 Suppl 2: p.
8962-8.
78. Fujii, R., The regulation of motile activity in fish chromatophores. Pigment Cell
Res, 2000. 13(5): p. 300-19.
79. Nascimento, A.A., J.T. Roland, and V.I. Gelfand, Pigment cells: a model for the
study of organelle transport. Annu Rev Cell Dev Biol, 2003. 19: p. 469-91.
80. Aspengren, S., D. Hedberg, H.N. Skold, and M. Wallin, New insights into
melanosome transport in vertebrate pigment cells. Int Rev Cell Mol Biol, 2009.
272: p. 245-302.
81. Bertoldi, M., Mammalian Dopa decarboxylase: structure, catalytic activity and
inhibition. Arch Biochem Biophys, 2014. 546: p. 1-7.
82. Giardina, G., R. Montioli, S. Gianni, B. Cellini, A. Paiardini, C.B. Voltattorni, and
F. Cutruzzola, Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Proc Natl Acad Sci U S A, 2011. 108(51): p. 20514-9.
83. Shih, D.F., C.D. Hsiao, M.Y. Min, W.S. Lai, C.W. Yang, W.T. Lee, and S.J. Lee,
Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One, 2013. 8(8): p. e71741.
84. Costa, M., J.B. Furness, and J.R. McLean, The presence of aromatic L-amino acid decarboxylase in certain intestinal nerve cells. Histochemistry, 1976. 48(2): p. 129- 43.
85. Hayashi, H., H. Mizuguchi, and H. Kagamiyama, Rat liver aromatic L-amino acid decarboxylase: spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry, 1993. 32(3): p. 812-8.
86. Holtz, P., R. Heise, and K. Lüdtke, Fermentativer Abbau von l-Dioxyphenylalanin (Dopa) durch Niere. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1938. 191(1): p. 87-118.
87. Blaschko, H., The specific action of L-dopa decarboxylase. J Physiol, 1939. 96(50): p. 50-1.
88. Woodruff, G.N., J. Poat, and P.J. Roberts, Dopaminergic systems and their regulation. 2016: Springer.
89. Brun, L., L.H. Ngu, W.T. Keng, G.S. Ch'ng, Y.S. Choy, W.L. Hwu, W.T. Lee, M.A. Willemsen, M.M. Verbeek, T. Wassenberg, L. Regal, S. Orcesi, D. Tonduti, P. Accorsi, H. Testard, J.E. Abdenur, S. Tay, G.F. Allen, S. Heales, I. Kern, M. Kato, A. Burlina, C. Manegold, G.F. Hoffmann, and N. Blau, Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology, 2010. 75(1): p. 64-71.
90. Himmelreich, N., R. Montioli, M. Bertoldi, C. Carducci, V. Leuzzi, C. Gemperle, T. Berner, K. Hyland, B. Thony, G.F. Hoffmann, C.B. Voltattorni, and N. Blau, Aromatic amino acid decarboxylase deficiency: Molecular and metabolic basis and therapeutic outlook. Mol Genet Metab, 2019. 127(1): p. 12-22.
91. Williams, J.D., E.L. Jacobson, H. Kim, M. Kim, and M.K. Jacobson, Folate in skin cancer prevention. Subcell Biochem, 2012. 56: p. 181-97.
92. Debowska, R., K. Rogiewicz, T. Iwanenko, M. Kruszewski, and I. Eris, Folic acid (Folacin): New application of a cosmetic ingredient. Kosmetische Medizin, 2005. 26(3): p. 123-129.
93. Ammar, H.O., M.M. Ghorab, D.M. Mostafa, and E.S. Ibrahim, Folic acid loaded lipid nanocarriers with promoted skin antiaging and antioxidant efficacy. Journal of drug delivery science and technology, 2016. 31: p. 72-82.
94. Gliszczynska-Swiglo, A. and M. Muzolf, pH-Dependent radical scavenging activity of folates. J Agric Food Chem, 2007. 55(20): p. 8237-42.
95. McEneny, J., C. Couston, B. McKibben, I.S. Young, and J.V. Woodside, Folate: in vitro and in vivo effects on VLDL and LDL oxidation. Int J Vitam Nutr Res, 2007. 77(1): p. 66-72.
96. Rezk, B.M., G.R. Haenen, W.J. van der Vijgh, and A. Bast, Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett, 2003. 555(3): p. 601-5.
97. Juzeniene, A., M. Grigalavicius, L.W. Ma, and M. Juraleviciute, Folic acid and its photoproducts, 6-formylpterin and pterin-6-carboxylic acid, as generators of reactive oxygen species in skin cells during UVA exposure. J Photochem Photobiol B, 2016. 155: p. 116-21.
98. Borradale, D.C. and M.G. Kimlin, Folate degradation due to ultraviolet radiation: possible implications for human health and nutrition. Nutr Rev, 2012. 70(7): p. 414-22.
99. Smith, D.E., J.M. Hornstra, R.M. Kok, H.J. Blom, and Y.M. Smulders, Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism. Clin Chem Lab Med, 2013. 51(8): p. 1643- 50.
100. Pietrzik, K., L. Bailey, and B. Shane, Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet, 2010. 49(8): p. 535-48.
101. Scaglione, F. and G. Panzavolta, Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica, 2014. 44(5): p. 480-8.
102. Bailey, S.W. and J.E. Ayling, The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A, 2009. 106(36): p. 15424-9.
103. Pfeiffer, C.M., M.R. Sternberg, Z. Fazili, E.A. Yetley, D.A. Lacher, R.L. Bailey, and C.L. Johnson, Unmetabolized folic acid is detected in nearly all serum samples from US children, adolescents, and adults. J Nutr, 2015. 145(3): p. 520-31.
104. Paniz, C., J.F. Bertinato, M.R. Lucena, E. De Carli, P. Amorim, G.W. Gomes, C.Z. Palchetti, M.S. Figueiredo, C.M. Pfeiffer, Z. Fazili, R. Green, and E.M. Guerra- Shinohara, A Daily Dose of 5 mg Folic Acid for 90 Days Is Associated with Increased Serum Unmetabolized Folic Acid and Reduced Natural Killer Cell Cytotoxicity in Healthy Brazilian Adults. J Nutr, 2017. 147(9): p. 1677-1685.
105. Mason, J.B., A. Dickstein, P.F. Jacques, P. Haggarty, J. Selhub, G. Dallal, and I.H. Rosenberg, A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiol Biomarkers Prev, 2007. 16(7): p. 1325-9.
106. Choi, J.H., Z. Yates, M. Veysey, Y.R. Heo, and M. Lucock, Contemporary issues surrounding folic Acid fortification initiatives. Prev Nutr Food Sci, 2014. 19(4): p. 247-60.
107. Henry, C.J., T. Nemkov, M. Casas-Selves, G. Bilousova, V. Zaberezhnyy, K.C. Higa, N.J. Serkova, K.C. Hansen, A. D'Alessandro, and J. DeGregori, Folate dietary insufficiency and folic acid supplementation similarly impair metabolism and compromise hematopoiesis. Haematologica, 2017. 102(12): p. 1985-1994.
108. Ro, H., K. Soun, E.J. Kim, and M. Rhee, Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol Cells, 2004. 17(2): p. 373-6.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-01-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw