進階搜尋


下載電子全文  
系統識別號 U0026-1501202000040400
論文名稱(中文) 推薦系統說服力之研究:探討自我監控能力之調節效果
論文名稱(英文) The Moderating Effect of Self-Monitoring on Persuasion of Recommendation System
校院名稱 成功大學
系所名稱(中) 國際企業研究所
系所名稱(英) Institute of International Business
學年度 108
學期 1
出版年 108
研究生(中文) 陳孟豊
研究生(英文) Meng-Li Chen
學號 R66061019
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 指導教授-郭亞慧
口試委員-曾瓊慧
口試委員-陳芃婷
中文關鍵字 ELM  說服力  偏好啟發  Cialdini說服力原則  自我監控  推薦系統 
英文關鍵字 ELM  persuasion  preference elicitation  Cialdini’s influence principle  self-monitoring  recommendation system 
學科別分類
中文摘要 隨著線上購物和電子商務的發展,近年來網站業者廣泛使用推薦系統。推薦系統不只幫助業者預測消費者對產品的偏好並推薦適合的產品,也幫助消費者從充滿大量替代品的網站平台上,找到他們感興趣的產品。過去的研究主要是在演算法的改善上,較少從消費者的角度出發,去改變推薦系統對消費者的說服力。為了深入了解何種方式消費者比較能改變消費者對推薦的看法,因此本研究利用推敲可能模型(ELM)為理論基礎,來探討偏好啟發與Cialdini的說服力原則作為推薦系統特性的說服能力。本研究以推薦系統模擬網站收集了 530 份有效問卷,研究結果顯示偏好啟發特性中的推薦問題相關性與回答的努力程度會透過ELM的中央路徑對於推薦系統的說服力有正向的影響,而Cialdini的說服力特性中的互惠、權威、社會證明與喜歡能作為周邊線索,透過ELM的周邊路徑對於推薦系統的說服力有正向的影響。
偏好啟發過程從內在影響消費者;相反的,Cialdini的說服力特性從外在影響消費者,為進一步了解內在與外在影響是否會受到自我監控能力的調節而讓推薦系統特性下的說服力產生差異,本研究先以探索性因素分析(EFA)萃取出「重視社交」及「忠於自我」兩種自我監控能力,再檢驗兩種能力對對推薦系統說服力的影響,結果顯示,相較於低程度,高程度之忠於自我的人更容易受到相關性的推薦系統的影響。因此業者可針對此群體設計推薦系統,強化相關性特性,可以提高推薦系統的行銷效果,也能夠增加此群體消費者使用推薦系統網站的可能性。
英文摘要 Recommendation system not only help practitioners to predict consumer’s preference and recommend suitable products for them, but also help consumers find the products that they are interested in among lots of alternatives. Previous research focus on algorithm improvement, however, this study focuses on the perspective of consumers. To gain insights into the ways in which consumers can change their decisions by proper recommendations, this study uses elaboration likelihood model (ELM) as theoretical basis to explore the persuasion of recommendation systems by using preference elicitation and Cialdini's influence principle as recommendation system characteristics. This study used a self-organized film recommendation system website and collected 530 valid questionnaires. Results indicated that relevance (i.e., questions relating to the recommended target) and effort (i.e., more questions to be answered) in preference elicitation process can be used as central clues to persuade consumers through the central route. Reciprocity, authority, social proof and liking in Cialdini's influence principles can be used as peripheral clues to persuade consumers through the peripheral path of ELM. While Preference elicitation process has internal influence, Cialdini's persuasive principles has external influence changing consumer attitudes. In order to further understand whether the internal and external influences will be moderated by self-monitoring and make the persuasion of recommendation systems to be different, this study firstly used Exploratory Factor Analysis (EFA) to identify “self-loyalty” and “sociable” as two dimensions of self-monitoring and secondly tested the influence of these two dimensions on the persuasion of the different characteristics of recommendation systems. The findings indicated that people scoring high on self-loyalty are more susceptible to “relevance” of recommendation systems. Therefore, marketers should design recommendation systems with including the characteristics identified by this study and emphasizing “relevance” for those self-loyal consumers.
論文目次 目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二章 文獻探討 3
第一節 推薦系統的說服力 3
第二節 由偏好啟發過程發展之推薦系統特性 4
第三節 由六大說服力策略發展之推薦系統特性 6
第四節 自我監控能力 9
第三章 研究假設與研究架構 11
第一節 理論架構 11
第二節 研究假設 12
第二節 研究架構 17
第四章 研究方法 18
第一節 實驗流程 18
第二節 不同的推薦系統與研究變數 19
第三節 資料處理與分析 20
第四節 前測分析 21
第五節 研究對象 22
第五章 研究結果 23
第一節 推薦特性之效果分析 23
第二節 調節效果分析 25
第三節 探索式因素分析(EFA) 26
第四節 萃取後因素的調節分析(Split-plot ANOVA) 27
第六章 討論與建議 30
第一節 討論 30
第二節 研究貢獻與實務應用 32
第三節 研究限制與建議 33
參考文獻 34
附錄 39
參考文獻 Aggarwal, P., Jun, S., & Huh, J. (2011). Scarcity messages: A consumer competition perspective. Journal of Advertising, 40(3), 19-30.
Amblee, N., & Bui, T.X. (2012). Value proposition and social proof in online deals: an exploratory study of Groupon.com. ICEC '12.
Anindya Ghose, P.G. Ipeirotis, & B. Li (2014). Examining the impact of ranking on consumer behavior and search engine revenue. Manag. Sci., 60 (7) 1632–1654.
Aron O. Cass (2001). Consumer Self-monitoring, Materialism and Involvement in Fashion Clothing. Australasian Marketing Journal (AMJ), 9(1), 46-60.
Barua, A., Desai, P., & Srivastava, R.( 2001). Economic perspectives on digital marketing. In J. Wind and V. Mahajan (eds.), Digital Marketing. New York: Wiley.
Bettman, J., Luce, M., & Payne, J. (1998). Constructive Consumer Choice Processes. Journal of Consumer Research, 25(3), 187-217.
Browne, B., & Kaldenberg, D. (1997). Conceptualizing self‐monitoring: links to materialism and product involvement. Journal of Consumer Marketing, 14(1), 31-44.
Bowlby, J. (1979). The Bowlby-Ainsworth attachment theory. Behavioral and Brain Sciences, 2(4), 637-638.
Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Model User-Adap Inter, 12, 331–370.
Cialdini, R.(1984). Influence. The Psychology of Persuasion. New York: William Morrow eCompany.
Cialdini, R. B., & Trost, M. R. (1998). Social influence: Social norms, conformity and compliance. In D. T. Gilbert, S. T. Fiske, & G. Lindzey (Eds.), The handbook of social
psychology (p. 151–192). McGraw-Hill.
Cheung, K., Kwok, J., Law, M., & Tsui, K. (2003). Mining customer product rating for personalized marketing. Decision Support Systems. 35. 231-243.
Church, A. H. (1993). Estimating the effect of incentives on mail survey response rates: A meta-analysis. Public Opinion Quarterly, 57(1), 62-79.
Clark, W. R., & Kemp, K. J. (2008). Using the Six Principles of Influence to Increase Student Involvement in Professional Organizations: A Relationship Marketing
Approach. Journal for Advancement of Marketing Education, 12, 43–51.
Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, & Evaluation, 10, 1-9.
DeBono, K. G. (2006). Self‐Monitoring and Consumer Psychology. Journal of Personality, 74, 715-738.
Daiton, M., & Zelley, E. D. (2011). Applying communication theory for professional life.
Feng-Yang Kuo, Tsai-Hsin Chu, Meng-Hsiang Hsu, & Hong-Ssu Hsieh(2004). An investigation of effort-accuracy trade-off and the impact of self-efficacy on Web searching behaviors. Decis. Support Syst. 37, 3 (June 2004), 331-342.
Gangestad, S. W., & Snyder, M. (2000). Self-monitoring: Appraisal and reappraisal. Psychological Bulletin, 126(4), 530-555.
Gkika, Sofia, & Lekakos, George(2014). The persuasive role of Explanations in Recommender Systems. CEUR Workshop Proceedings. 1153. 59-68.
Hair Jr., J. F. et al. (1998). Multivariate Data Analysis with Readings. Englewood Cliffs,NJ: Prentice-Hall.
Häubl, G., & Murray, K.B. (2003). Preference construction and persistence in digital marketplaces: The role of electronic recommendation agents. Journal of Consumer
Psychology, 13, 1–2, 75–9.
Hwang, J., & Kandampully, J. (2012) The Role of Emotional Aspects in Younger Consumer-Brand Relationships. Journal of Product & Brand Management, 21, 98-108.
Hutton, D. G., & Baumeister, R. F. (1992). Self-Awareness and Attitude Change: Seeing Oneself on the Central Route to Persuasion. Personality and Social Psychology Bulletin, 18(1), 68–75.
Ijsselsteijn W., de Kort Y., Midden C., Eggen B.,& van den Hoven E. (2006) Persuasive Technology for Human Well-Being: Setting the Scene. In: IJsselsteijn W.A., de Kort Y.A.W., Midden C., Eggen B., van den Hoven E. (eds) Persuasive Technology.
Jae Min Jung, Kawpong Polyorat, & James J. Kellaris(2009). A cultural paradox in authority‐ based advertising. International Marketing Review, 26 (6), 601-632.
Judith Lynne Zaichkowsky(1985). Measuring the Involvement Construct. Journal of Consumer Research, 12(3), 341–352.
J. T. R. Michael D. Ekstrand, & J. A. Konstan(2010). Collaborative filtering recommender systems. Foundations and Trends in Human Computer Interaction, 4(2), 81–173.
Kim, M. S., Kim, D. T.,& Kim, J. I. (2014). CSR for Sustainable Development: CSR Beneficiary Positioning and Impression Management Motivation. Corp. Soc. Responsib. Environ. Mgmt., 21, 14-27.
Kovacs, Michelle,& Farias, Salomão, & Tigre Moura, Francisco, & Souza, Anderson(2011). Relations between Consumer Effort, Risk Reduction Strategies, and
Satisfaction with the E-commerce Buying Process: The Development of a Conceptual Framework. International Journal of Management. 28. 316.
Lee, G., & Lee, W. J. (2009). Psychological reactance to online recommendation services.Information & Management, 46(8), 448-452.
Leone, Christopher(2006). Self-Monitoring: Individual Differences in Orientations to the Social World. Journal of personality. 74. 633-57.
Li Chen, & Pearl Pu.(2004) Survey of Preference Elicitation Methods. Technical Report No. IC/200467, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne,
Switzerland.
Mallalieu, L. (2006), Consumer perception of salesperson influence strategies: an examination of the influence of consumer goals. Journal of Consumer Behaviour, 5, 257-268.
Markus, H., & Nurius, P. (1986). Possible selves. American Psychologist, 41(9), 954-969.
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81-97.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469.
Petty, Richard & Cacioppo, John & Goldman, Rachel. (1981). Personal involvement as a determinant of argument-based persuasion. Journal of Personality and Social Psychology. 41. 847-855.
Petty R.E., Cacioppo J.T. (1986) The Elaboration Likelihood Model of Persuasion. In: Communication and Persuasion. Springer Series in Social Psychology. Springer, New York, NY.
Richard E. Petty, John T. Cacioppo, David Schumann(1983). Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Involvement. Journal of Consumer Research, 10(2), 135–146.
Rentfrow, Peter & Gosling, Samuel(2003). The Do Re Mi's of Everyday Life: The Structure and Personality Correlates of Music Preferences. Journal of personality and social psychology. 84. 1236-56.
Salmon, S. J., De Vet, E., Adriaanse, M. A., Fennis, B. M., Veltkamp, M., & De Ridder, D. T. D. (2015). Social proof in the supermarket: Promoting healthy choices under low self-control conditions. Food Quality and Preference, 45, 113-120.
Shuo Chang, F. Maxwell Harper, and Loren Terveen(2015). Using Groups of Items for Preference Elicitation in Recommender Systems. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing (CSCW ’15). Association for Computing Machinery, NY, USA, 1258–1269.
Sinha, R., Swearingen, K. (2002). The role of transparency in recommender systems. CHI'02 extended abstracts on Human factors in computing systems. 830–831.
Snyder, M. (1974). Self-monitoring of expressive behavior. Journal of Personality and Social Psychology, 30(4), 526-537.
Snyder, M., & Gangestad, S. (1986). On the Nature of Self-Monitoring. Matters of Assessment, Matters of Validity. Journal of personality and social psychology, 51(1), 125-139.
Swanson, E. (1974). Management Information Systems: Appreciation and Involvement. Management Science, 21(2), 178-188.
Tam, K., & Ho, S. (2005). Web Personalization as a Persuasion Strategy: An ElaborationLikelihood Model Perspective. Information Systems Research, 16(3), 271-291.
Ting-Peng Liang , Hung-Jen Lai & Yi-Cheng Ku (2006) Personalized Content Recommendation and User Satisfaction: Theoretical Synthesis and Empirical Findings. Journal of Management Information Systems, 23:3, 45-70.
Tintarev, N., & Masthoff, J. (2007). A Survey of Explanations in Recommender Systems.
In G. Uchyigit (Ed.), Data Engineering Workshop: 3rd International Workshop on Web Personalisation, Recommender Systems and Intelligent User Interfaces(WPRSIUI'07) (pp. 801-810). Los Alamitos, CA, USA.
Tintarev, N., Masthoff J. (2012). Evaluating the effectiveness of explanations. User Model User-Adap Inter. 399–439.
Turnley, W. H., & Bolino, M. C. (2001). Achieving desired images while avoiding undesired images: Exploring the role of self-monitoring in impression management. Journal of Applied Psychology, 86(2), 351-360.
Ulrike Gretzel & Daniel R. Fesenmaier (2006). Persuasion in Recommender Systems. International Journal of Electronic Commerce, 11(2), 81-100.
Ursachi, George, Zait, Adriana, & Horodnic, Ioana(2015). How Reliable are Measurement Scales? External Factors with Indirect Influence on Reliability Estimators. Procedia Economics and Finance. 20. 679-686.
William O. Bearden & Michael J. Etzel (1982). Reference Group Influence on Product and Brand Purchase Decisions. Journal of Consumer Research, 9(2), 183–194.
Xiao, B.,& Benbasat, I.(2007). E-commerce product recommendation agents: use, characteristics and impact. Mis Quarterly, 31(1), 137–209.
Y. H. Cho, J. K. Kim & S. H. Kim(2002). A personalized recommender system based on web usage mining and decision tree induction. Expert systems with Applications, 23(3), 329–342.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw