進階搜尋


下載電子全文  
系統識別號 U0026-1501201914422100
論文名稱(中文) 利用聚乳酸甘醇酸提升植酸轉化塗層之抗腐蝕能力應用於生物可吸收鎂合金
論文名稱(英文) Enhancement of Corrosion Resistance of Phytic Acid Conversion Coating on Bioresorbable Magnesium Alloys Using PLGA
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 1
出版年 107
研究生(中文) 柳哲維
研究生(英文) Je-Wei Liu
學號 P86054200
學位類別 碩士
語文別 英文
論文頁數 77頁
口試委員 指導教授-葉明龍
口試委員-洪飛義
口試委員-蘇維仁
中文關鍵字 鎂合金  骨科植體  抗腐蝕能力  化學轉化法  植酸  聚乳酸甘醇酸 
英文關鍵字 magnesium alloys  orthopedic implant  corrosion resistance  chemical conversion  phytic acid  PLGA 
學科別分類
中文摘要 近年來,鎂合金是新型生物可降解吸收骨科植體的材料選擇之一,歸因於其良好的生物相容性、生物可降解吸收性、輕量特性及與人體自然骨相似的機械性質,這些特點綜合了傳統鈦金屬或高分子材料等材料之優勢,可替代傳統生醫骨科植體材料。然而,鎂合金在人體環境中降解過快,會影響初期植入之植體穩定性,降解過程伴隨著氫氣產生與累積,可能造成植體周邊組織壞死,此外,若發生骨頭尚未完全癒合但植體卻已完全降解之情況,亦會導致二次骨折。因此,改善鎂合金植體的抗腐蝕能力是當務之急,可利用表面處理的方式來有效加強其抗腐蝕性。
本研究使用植酸化學轉化法產生一層具有防蝕能力的植酸塗層於鎂金屬上。植酸是一種含有磷酸鹽的有機酸,其優點為無毒性,帶負電的磷酸根離子可以和帶正電的金屬陽離子產生化學反應,所以會在鎂金屬表面上形成一層化學轉化膜。然而,在反應過程中會伴隨著鎂金屬氫氣的釋放,造成塗層有許多微米等級的裂縫,導致局部腐蝕的發生並使塗層的保護力降低。因此,本研究進一步使用聚乳酸甘醇酸高分子材料來密封轉化塗層上裂縫,以期加強整體塗層之抗腐蝕能力。表面形貌分析與能量色散X射線能譜證明聚乳酸甘醇酸成功密封植酸塗層的微裂縫,腐蝕形貌比較、氫氣釋放實驗、酸鹼值變化測定與電化學極化曲線的結果顯示聚乳酸甘醇酸密封之植酸塗層具備一定的抗腐蝕能力,比單純植酸塗層或單一聚乳酸甘醇酸塗層提供更佳的腐蝕保護力。經由細胞毒性測試、細胞貼附測試與模擬傷口癒合測試來進一步得證聚乳酸甘醇酸-植酸複合塗層具有良好的成骨細胞相容性,植體甚至具有促進傷口癒合之效果。最後結合表面粗糙度與表面親水性分析來探討成骨細胞與此骨科植體間的相互關係。
英文摘要 In recent years, magnesium alloys have been considered as novel bioresorbable materials. Magnesium alloys possess good biocompatibility, lightweight property, mechanical properties similar to natural bones and bioresorbability, making them become new alternatives over conventional titanium alloys and polymeric materials as orthopedic implants materials. The drawback of magnesium alloys is the poor corrosion resistance leading to high degradation rate in human bodies. Hence, surface modification is needed to enhance their corrosion resistance.
In this study, chemical conversion treatment with phytic acid (PA) was used to deposit a protective coating on high purity magnesium (HP-Mg). In order to seal the micro cracks appearing on the coating, PLGA was used to manufacture a PA/PLGA composite coating. The SEM photos and EDS analysis showed that PLGA successfully sealed the micro cracks on the PA conversion coating, giving it a smooth surface. The hydrogen evolution test, pH variation test and polarization curves confirmed that the corrosion resistance was further enhanced after cracks were sealed with PLGA. Cytotoxicity, cell adhesion and wound healing assay indicated that PA/PLGA composite coating was biocompatible and did not pose bad effects on bone cells. Besides, the cell-implant interface phenomenon was explained by surface roughness and surface hydrophilicity. Therefore, from the results above, the PA/PLGA composite coating manufactured in this study is a suitable candidate for the protection of magnesium implant materials and is not toxic to human bodies with a therapeutic property.
論文目次 摘要 I
Abstract II
致謝 III
Table of Contents V
List of Tables VIII
List of Figures IX
Chapter 1: Introduction 1
1.1. The prevalence of traumatic bone fractures 1
1.2. The development of orthopedic implants 1
1.2.1. Polymeric materials for orthopedic implants 3
1.2.2. Conventional metallic materials for orthopedic implants 4
1.2.3. Bioresorbable magnesium (Mg) alloys 6
1.3. Corrosion mechanism of Mg alloys in biological environment 7
1.4. Strategies to inhibit the rapid corrosion of Mg implants 9
1.5. Comparison of distinct surface modification on Mg alloys 11
1.6. Phytic acid (PA) chemical conversion coating 14
1.7. Post treatments of the PA coating to enhance its corrosion resistance 16
1.8. Poly(lactic-co-glycolide) (PLGA) 17
1.9. Motivation and aims of the research 19
Chapter 2: Materials and Methods 21
2.1. Experimental design 21
2.1.1. Experimental materials 21
2.1.2. Experimental equipment 23
2.2. Experimental methods 24
2.2.1. Preparation of Mg specimens 24
2.2.2. Phytic acid chemical conversion 24
2.2.3. PLGA sealing 25
2.2.4. Chemical elements of Mg substrate by ICP-MS 25
2.2.5. Surface morphology 25
2.2.6. Chemical composition analysis of the coating 26
2.2.7. Cross-section analysis 26
2.2.8. Coating adhesion test 26
2.2.9. Surface roughness 28
2.2.10. Surface wettability 28
2.2.11. Immersion test 28
2.2.12. Hydrogen evolution 29
2.2.13. pH variation test 30
2.2.14. Potentiodynamic polarization 30
2.2.15. Cell culture 31
2.2.16. Cytotoxicity test 31
2.2.17. Cell adhesion observation 32
2.2.18. Wound healing assay 32
Chapter 3: Results and Discussion 34
3.1. Material characterization 34
3.1.1. Chemical composition of HP-Mg by ICP-MS 34
3.1.2. Surface morphology 35
3.1.3. EDS chemical composition analysis 37
3.1.4. Cross-section morphology and thickness 39
3.1.5. Coating adhesion to the substrate by tape test 41
3.1.6. Surface roughness by AFM 44
3.1.7. Surface wettability 46
3.2. Corrosion analysis 47
3.2.1. SBF immersion and corrosion morphology 47
3.2.2. Hydrogen evolution 49
3.2.3. pH variation 51
3.2.4. Electrochemical test 52
3.3. In vitro tests 55
3.3.1. Cytotoxicity 55
3.3.2. Cell adhesion 57
3.3.3. Wound healing assay 61
Chapter 4: Conclusion 65
References 67
參考文獻 1. Pollak, A.N., Injuries. The Burden of Musculoskeletal Diseases in the United States (BMUS) 2014. 3rd Edition: p. 291-316.
2. Dare, A.J. and G.Q. Hu, China's evolving fracture burden. Lancet Global Health, 2017. 5(8): p. E736-E737.
3. Court-Brown, C.M., A.M. Wood, and S. Aitken, The epidemiology of acute sports-related fractures in adults. Injury, 2008. 39(12): p. 1365-1372.
4. Pan, R.H., N.T. Chang, D.C. Chu, K.F. Hsu, Y.N. Hsu, J.C. Hsu, et al., Epidemiology of Orthopedic Fractures and Other Injuries among Inpatients Admitted due to Traffic Accidents: A 10-Year Nationwide Survey in Taiwan. Scientific World Journal, 2014.
5. Dalvi, Q., World Report on Road Traffic Injury Prevention by World Health Organization and World Bank (WHO, Geneva, April 2004). Transport Reviews, 2004. 24(3): p. 365-376.
6. Dhanwal, D.K., E.M. Dennison, N.C. Harvey, and C. Cooper, Epidemiology of hip fracture: Worldwide geographic variation. Indian Journal of Orthopaedics, 2011. 45(1): p. 15-22.
7. Ong, K.L., B.M. Yun, and J.B. White, New biomaterials for orthopedic implants. Orthopedic Research and Reviews, 2015. 7: p. 107-130.
8. Ning, C.Y., L. Zhou, and G.X. Tan, Fourth-generation biomedical materials. Materials Today, 2016. 19(1): p. 2-3.
9. Hench, L.L. and J.M. Polak, Third-generation biomedical materials. Science, 2002. 295(5557): p. 1014-1017.
10. Gentile, P., V. Chiono, I. Carmagnola, and P.V. Hatton, An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. International Journal of Molecular Sciences, 2014. 15(3): p. 3640-3659.
11. Prakasam, M., J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Biodegradable Materials and Metallic Implants-A Review. Journal of Functional Biomaterials, 2017. 8(4): p.44.
12. Kopova, I., J. Strasky, P. Harcuba, M. Landa, M. Janecek, and L. Bacakova, Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Materials Science & Engineering C-Materials for Biological Applications, 2016. 60: p. 230-238.
13. Wang, S., Y.H. Liu, C.X. Zhang, Z.H. Liao, and W.Q. Liu, The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribology International, 2014. 79: p. 174-182.
14. Kesteven, J., M.B. Kannan, R. Walter, H. Khakbaz, and H.C. Choe, Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: Enhancing the biodegradation resistance by electrochemical surface engineering. Materials Science & Engineering C-Materials for Biological Applications, 2015. 46: p. 226-231.
15. M., S., Classic and new titanium alloys for production of artificial hip joints. Titan, 1986. 2: p. 721.
16. Browy K-H, K.K.-H., On the properties of a new titanium alloy (TiAl5Fe2.5) as implant material. Titanium science and technology, 1985. vol. 2: p. 1381.
17. Okazaki, Y., Y. Ito, T. Tateishi, and A. Ito, Effect of Heat-Treatment on Microstructure and Mechanical-Properties of New Titanium-Alloys for Surgical Implantation. Journal of the Japan Institute of Metals, 1995. 59(1): p. 108-115.
18. Lausmaa, J. and L. Linder, Surface Spectroscopic Characterization of Titanium Implants after Separation from Plastic-Embedded Tissue. Biomaterials, 1988. 9(3): p. 277-280.
19. Salahinejad, E., M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, et al., In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants. Plos One, 2013. 8(4): e61633.
20. Lo, K.H., C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels. Materials Science & Engineering R-Reports, 2009. 65(4-6): p. 39-104.
21. Yang, K. and Y.B. Ren, Nickel-free austenitic stainless steels for medical applications. Science and Technology of Advanced Materials, 2010. 11(1): 014105.
22. Song, G.L., Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007. 49(4): p. 1696-1701.
23. Niinomi, M., M. Nakai, and J. Hieda, Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 2012. 8(11): p. 3888-3903.
24. Staiger, M.P., A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006. 27(9): p. 1728-1734.
25. Heublein, B., R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003. 89(6): p. 651-656.
26. Peuster, M., P. Beerbaum, F.W. Bach, and H. Hauser, Are resorbable implants about to become a reality? Cardiology in the Young, 2006. 16(2): p. 107-116.
27. Zartner, P., M. Buettner, H. Singer, and M. Sigler, First biodegradable metal stent in a child with congenital heart disease: Evaluation of macro and histopathology. Catheterization and Cardiovascular Interventions, 2007. 69(3): p. 443-446.
28. Erne, P., M. Schier, and T.J. Resink, The road to bioabsorbable stents: Reaching clinical reality? Cardiovascular and Interventional Radiology, 2006. 29(1): p. 11-16.
29. Agarwal, S., J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science & Engineering C-Materials for Biological Applications, 2016. 68: p. 948-963.
30. Tan, L.L., X.M. Yu, P. Wan, and K. Yang, Biodegradable Materials for Bone Repairs: A Review. Journal of Materials Science & Technology, 2013. 29(6): p. 503-513.
31. Jamesh, M., S. Kumar, and T.S.N.S. Narayanan, Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer's solution - Long term evaluation by EIS. Corrosion Science, 2011. 53(2): p. 645-654.
32. GU, X. and ZHENG Y. , A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China, 2010. 4(2): p. 111-115.
33. Song, G.L. and S.Z. Song, A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007. 9(4): p. 298-302.
34. Vormann, J., Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003. 24(1-3): p. 27-37.
35. Zreiqat, H., C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, et al., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research, 2002. 62(2): p. 175-184.
36. Zeng, R.C., W. Dietzel, F. Witte, N. Hort, and C. Blawert, Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008. 10(8): p. B3-B14.
37. Zeng, R.C., J. Zhang, W.J. Huang, W. Dietzel, K.U. Kainer, C. Blawert, et al., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006. 16: p. S763-S771.
38. Ghali, E., W. Dietzel, and K.U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review. Journal of Materials Engineering and Performance, 2013. 22(10): p. 2875-2891.
39. Liu, L.J. and M. Schlesinger, Corrosion of magnesium and its alloys. Corrosion Science, 2009. 51(8): p. 1733-1737.
40. Shin, K.S., M.Z. Bian, and N.D. Nam, Effects of Crystallographic Orientation on Corrosion Behavior of Magnesium Single Crystals. Jom, 2012. 64(6): p. 664-670.
41. Song, G.L. and A. Atrens, Understanding magnesium corrosion - A framework for improved alloy performance. Advanced Engineering Materials, 2003. 5(12): p. 837-858.
42. Shi, Z.M., M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Science, 2010. 52(2): p. 579-588.
43. Song, G.L., Recent progress in corrosion and protection of magnesium alloys. Advanced Engineering Materials, 2005. 7(7): p. 563-586.
44. Winzer, N., A. Atrens, W. Dietzel, G. Song, and K.U. Kainer, Fractography of stress corrosion cracking of mg-al alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2008. 39a(5): p. 1157-1173.
45. Cao, F.Y., G.L. Song, and A. Atrens, Corrosion and passivation of magnesium alloys. Corrosion Science, 2016. 111: p. 835-845.
46. Prasad, A., P.J. Uggowitzer, Z.M. Shi, and A. Atrens, Production of High Purity Magnesium Alloys by Melt Purification with Zr. Advanced Engineering Materials, 2012. 14(7): p. 477-490.
47. Liu, M. and G.L. Song, Impurity control and corrosion resistance of magnesium-aluminum alloy. Corrosion Science, 2013. 77: p. 143-150.
48. Velikokhatnyi, O.I. and P.N. Kumta, First-principles studies on alloying and simplified thermodynamic aqueous chemical stability of calcium-, zinc-, aluminum-, yttrium- and iron-doped magnesium alloys. Acta Biomaterialia, 2010. 6(5): p. 1698-1704.
49. Arrabal, R., E. Matykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corrosion Science, 2008. 50(6): p. 1744-1752.
50. Neubert, V., I. Stulikova, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, et al., Thermal stability and corrosion behaviour of Mg-Y-Nd and Mg-Tb-Nd alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007. 462(1-2): p. 329-333.
51. Mengucci, P., G. Barucca, G. Riontino, D. Lussana, M. Massazza, R. Ferragut, et al., Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 479(1-2): p. 37-44.
52. Ben-Hamu, G., D. Eliezer, K.S. Shin, and S. Cohen, The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys. Journal of Alloys and Compounds, 2007. 431(1-2): p. 269-276.
53. Zhu, S.M., M.A. Gibson, M.A. Easton, and J.F. Nie, The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys. Scripta Materialia, 2010. 63(7): p. 698-703.
54. Brar, H.S., J.P. Ball, I.S. Berglund, J.B. Allen, and M.V. Manuel, A study of a biodegradable Mg-3Sc-3Y alloy and the effect of self-passivation on the in vitro degradation. Acta Biomaterialia, 2013. 9(2): p. 5331-5340.
55. Fairman, L., Transgranular Scc in Mg-Al Alloys. Corrosion Science, 1971. 11(7): p. 533-541.
56. Zhao, M.C., M. Liu, G.L. Song, and A. Atrens, Influence of the beta-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 2008. 50(7): p. 1939-1953.
57. Liu, M., P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G.L. Song, et al., Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys. Corrosion Science, 2009. 51(3): p. 602-619.
58. Song, G.L., The Effect of Texture on the Corrosion Behavior of AZ31 Mg Alloy. Jom, 2012. 64(6): p. 671-679.
59. Ben Hamu, G., D. Eliezer, and L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2009. 468(1-2): p. 222-229.
60. Song, G.L., A.L. Bowles, and D.H. StJohn, Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 366(1): p. 74-86.
61. Dai, J.H., B. Jiang, C. Peng, and F.S. Pan, Effect of Mn additions on diffusion behavior of Fe in molten magnesium alloys by solid-liquid diffusion couples. Journal of Alloys and Compounds, 2017. 710: p. 260-266.
62. Cao, F.Y., Z.M. Shi, G.L. Song, M. Liu, and A. Atrens, Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)(2) of as-cast and solution heat-treated binary Mg-X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corrosion Science, 2013. 76: p. 60-97.
63. Shrestha, S., Magnesium and surface engineering. Surface Engineering, 2010. 26(5): p. 313-316.
64. Asri, R.I.M., W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, et al., Corrosion and surface modification on biocompatible metals: A review. Materials Science & Engineering C-Materials for Biological Applications, 2017. 77: p. 1261-1274.
65. Zheng, H., S.J. Wu, H.P. Sheng, C. Liu, Y. Liu, F. Cao, et al., Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Applied Physics Letters, 2014. 104(14): 141906.
66. Kim, S.Y., Y.K. Kim, M.H. Ryu, T.S. Bae, and M.H. Lee, Corrosion resistance and bioactivity enhancement of MAO coated Mg alloy depending on the time of hydrothermal treatment in Ca-EDTA solution. Scientific Reports, 2017. 7: 9061.
67. Joni, M.S. and A. Fattah-alhosseini, Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy. Journal of Alloys and Compounds, 2016. 661: p. 237-244.
68. Cui, X.J., X.Z. Lin, C.H. Liu, R.S. Yang, X.W. Zheng, and M. Gong, Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corrosion Science, 2015. 90: p. 402-412.
69. Zhang, L., J.Q. Zhang, C.F. Chen, and Y.H. Gu, Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications. Corrosion Science, 2015. 91: p. 7-28.
70. Wang, Z.J., L.N. Wu, W. Cai, S. A, and Z.H. Jiang, Effects of fluoride on the structure and properties of microarc oxidation coating on aluminium alloy. Journal of Alloys and Compounds, 2010. 505(1): p. 188-193.
71. Narayanan, T.S.N.S., I.S. Park, and M.H. Lee, Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Progress in Materials Science, 2014. 60: p. 1-71.
72. Fan, X.Z., Y. Wang, B.L. Zou, L.J. Gu, W.Z. Huang, and X.Q. Cao, Preparation and corrosion resistance of MAO/Ni-P composite coat on Mg alloy. Applied Surface Science, 2013. 277: p. 272-280.
73. Dong, K.H., Y.W. Song, D.Y. Shan, and E.H. Han, Formation mechanism of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy. Surface & Coatings Technology, 2015. 266: p. 188-196.
74. Kuznetsova, A., J.T. Yates, G. Zhou, J.C. Yang, and X.D. Chen, Making a superior oxide corrosion passivation layer on aluminum using ozone. Langmuir, 2001. 17(7): p. 2146-2152.
75. Wang, R.G., Corrosion behaviour of SUS304 stainless steel after UV-O-3 treatment in sealed air environment. Surface Engineering, 2011. 27(3): p. 174-179.
76. Xu, C.H. and W. Gao, Pilling-Bedworth ratio for oxidation of alloys. Materials Research Innovations, 2000. 3(4): p. 231-235.
77. Xu, L.P. and A. Yamamoto, Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids and Surfaces B-Biointerfaces, 2012. 93: p. 67-74.
78. Degner, J., F. Singer, L. Cordero, A.R. Boccaccini, and S. Virtanen, Electrochemical investigations of magnesium in DMEM with biodegradable polycaprolactone coating as corrosion barrier. Applied Surface Science, 2013. 282: p. 264-270.
79. Zomorodian, A., C. Santos, M.J. Carmezim, T.M.E. Silva, J.C.S. Fernandes, and M.F. Montemor, "In-vitro" corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin. Electrochimica Acta, 2015. 179: p. 431-440.
80. Yazdimamaghani, M., M. Razavi, D. Vashaee, and L. Tayebi, Microstructural and mechanical study of PCL coated Mg scaffolds. Surface Engineering, 2014. 30(12): p. 920-926.
81. Xu, L.P. and A. Yamamoto, In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition. Applied Surface Science, 2012. 258(17): p. 6353-6358.
82. Zomorodian, A., M.P. Garcia, T.M.E. Silva, J.C.S. Fernandes, M.H. Fernandes, and M.F. Montemor, Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Acta Biomaterialia, 2013. 9(10): p. 8660-8670.
83. Li, J.N., P. Cao, X.N. Zhang, S.X. Zhang, and Y.H. He, In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloy. Journal of Materials Science, 2010. 45(22): p. 6038-6045.
84. Smith, L.J., J.S. Swaim, C. Yao, K.M. Haberstroh, E.A. Nauman, and T.J. Webster, Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications. International Journal of Nanomedicine, 2007. 2(3): p. 493-499.
85. Ostrowski, N.J., B. Lee, A. Roy, M. Ramanathan, and P.N. Kumta, Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications. Journal of Materials Science-Materials in Medicine, 2013. 24(1): p. 85-96.
86. Hu, X.F., Y.F. Feng, G. Xiang, W. Lei, and L. Wang, Lactic acid of PLGA coating promotes angiogenesis on the interface between porous titanium and diabetic bone. Journal of Materials Chemistry B, 2018. 6(15): p. 2274-2288.
87. Li, Y., L. Liu, X. Qu, L. Ren, and K. Dai, Drug delivery property, antibacterial performance and cytocompatibility of gentamicin loaded poly(lactic-co-glycolic acid) coating on porous magnesium scaffold. Materials Technology, 2015. 30(B2): p. B96-B103.
88. Zhang, J., Y. Liu, R.F. Luo, S. Chen, X. Li, S.H. Yuan, et al., In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings. Applied Surface Science, 2015. 328: p. 154-162.
89. Loo, S.C.J., C.P. Ooi, and Y.C.F. Boey, Influence of electron-beam radiation on the hydrolytic degradation behaviour of poly(lactide-co-glycolide) (PLGA). Biomaterials, 2005. 26(18): p. 3809-3817.
90. Lu, P., L. Cao, Y. Liu, X.H. Xu, and X.F. Wu, Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2011. 96b(1): p. 101-109.
91. Zeng, R.C., L.Y. Cui, K. Jiang, R. Liu, B.D. Zhao, and Y.F. Zheng, In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(L-lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants. Acs Applied Materials & Interfaces, 2016. 8(15): p. 10014-10028.
92. Dabala, M., K. Brunelli, E. Napolitani, and M. Magrini, Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surface & Coatings Technology, 2003. 172(2-3): p. 227-232.
93. Chen, D.C., J.F. Wu, Y.Q. Liang, S.L. Ye, and W.F. Li, Preparation of cerium oxide based environment-friendly chemical conversion coating on magnesium alloy with additives. Transactions of Nonferrous Metals Society of China, 2011. 21(8): p. 1905-1910.
94. Chong, K.Z. and T.S. Shih, Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution. Materials Chemistry and Physics, 2003. 80(1): p. 191-200.
95. Mosialek, M., G. Mordarski, P. Nowak, W. Simka, G. Nawrat, M. Hanke, et al., Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies. Surface & Coatings Technology, 2011. 206(1): p. 51-62.
96. Jian, S.Y., Y.R. Chu, and C.S. Lin, Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corrosion Science, 2015. 93: p. 301-309.
97. Han, E.H., W.Q. Zhou, D.Y. Shan, and W. Ke, Corrosion and protection of magnesium alloy AZ31D by a new conversion coating. Magnesium Alloys 2003, Pts 1 and 2, 2003. 419-4: p. 879-882.
98. Huo, H.W., Y. Li, and F.H. Wang, Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science, 2004. 46(6): p. 1467-1477.
99. Yang, K.H., M.D. Ger, W.H. Hwu, Y. Sung, and Y.C. Liu, Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy. Materials Chemistry and Physics, 2007. 101(2-3): p. 480-485.
100. Wang, X.M., L.Q. Zhu, X. He, and F.L. Sun, Effect of cerium additive on aluminum-based chemical conversion coating on AZ91D magnesium alloy. Applied Surface Science, 2013. 280: p. 467-473.
101. Gu, C.D., W. Yan, J.L. Zhang, and J.P. Tu, Corrosion resistance of AZ31B magnesium alloy with a conversion coating produced from a choline chloride-Urea based deep eutectic solvent. Corrosion Science, 2016. 106: p. 108-116.
102. Chang, M.L., J.F. Wu, D.C. Chen, and S.L. Ye, The Composition of the Rare Earth Based Conversion Coating Formed on AZ91D Magnesium Alloy. Corrosion Science and Technology-Korea, 2018. 17(1): p. 1-5.
103. Liu, J.R., Y.N. Guo, and W.D. Huang, Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys. Surface & Coatings Technology, 2006. 201(3-4): p. 1536-1541.
104. Cui, X.F., Q.F. Li, Y. Li, F.H. Wang, G. Jin, and M.H. Ding, Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy. Applied Surface Science, 2008. 255(5): p. 2098-2103.
105. Pan, F.S., X. Yang, and D.F. Zhang, Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy. Applied Surface Science, 2009. 255(20): p. 8363-8371.
106. Gao, H.F., H.Q. Tan, J. Li, Y.Q. Wang, and J.Q. Xun, Synergistic effect of cerium conversion coating and phytic acid conversion coating on AZ31B magnesium alloy. Surface & Coatings Technology, 2012. 212: p. 32-36.
107. Gupta, R.K., K. Mensah-Darkwa, J. Sankar, and D. Kumar, Enhanced corrosion resistance of phytic acid coated magnesium by stearic acid treatment. Transactions of Nonferrous Metals Society of China, 2013. 23(5): p. 1237-1244.
108. Zhang, R.Y., S. Cai, G.H. Xu, H. Zhao, Y. Li, X.X. Wang, et al., Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance. Applied Surface Science, 2014. 313: p. 896-904.
109. Hernandez-Alvarado, L.A., L.S. Hernandez, M.A. Lomeli, J.M. Miranda, L. Narvaez, I. Diaz, et al., Phytic acid coating on Mg-based materials for biodegradable temporary endoprosthetic applications. Journal of Alloys and Compounds, 2016. 664: p. 609-618.
110. Gupta, R.K., K. Mensah-Darkwa, and D. Kumar, Effect of Post Heat Treatment on Corrosion Resistance of Phytic Acid Conversion Coated Magnesium. Journal of Materials Science & Technology, 2013. 29(2): p. 180-186.
111. Chen, Y.Q., S. Zhao, B. Liu, M.Y. Chen, J.L. Mao, H.R. He, et al., Corrosion-Controlling and Osteo-Compatible Mg Ion-Integrated Phytic Acid (Mg-PA) Coating on Magnesium Substrate for Biodegradable Implants Application. Acs Applied Materials & Interfaces, 2014. 6(22): p. 19531-19543.
112. Liu, J.R., Y.N. Guo, and W.D. Huang, Formation process and properties of phytic acid conversion coatings on magnesium. Anti-Corrosion Methods and Materials, 2012. 59(5): p. 225-230.
113. Cui, X.F., Y. Li, Q.F. Li, G. Jin, M.H. Ding, and F.H. Wang, Influence of phytic acid concentration on performance of phytic acid conversion coatings on the AZ91D magnesium alloy. Materials Chemistry and Physics, 2008. 111(2-3): p. 503-507.
114. Chen, Y.Q., X. Zhang, S. Zhao, M.F. Maitz, W.T. Zhang, S. Yang, et al., In situ incorporation of heparin/bivalirudin into a phytic acid coating on biodegradable magnesium with improved anticorrosion and biocompatible properties. Journal of Materials Chemistry B, 2017. 5(22): p. 4162-4176.
115. Eanes, E.D. and Posner, A.S., Structure and chemistry of bone mineral. In: Schraer H (ed). Biological calcification., 1970. 1970: p. 1-26.
116. Bonucci, E., Bone mineralization. Frontiers in Bioscience-Landmark, 2012. 17: p. 100-128.
117. Xu, L.P., F. Pan, G.N. Yu, L. Yang, E.L. Zhang, and K. Yang, In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009. 30(8): p. 1512-1523.
118. LeGeros, R.Z., Properties of osteoconductive biomaterials: Calcium phosphates. Clinical Orthopaedics and Related Research, 2002. 395(395): p. 81-98.
119. Babaie, E., Y.F. Ren, and S.B. Bhaduri, Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization. Journal of Materials Research, 2016. 31(8): p. 995-1003.
120. Kanter, B., A. Vikman, T. Bruckner, M. Schamel, U. Gbureck, and A. Ignatius, Bone regeneration capacity of magnesium phosphate cements in a large animal model. Acta Biomaterialia, 2018. 69: p. 352-361.
121. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(3): p. 1377-1397.
122. Yfantis, A., I. Paloumpa, D. Schmeisser, and D. Yfantis, Novel corrosion-resistant films for Mg alloys. Surface & Coatings Technology, 2002. 151: p. 400-404.
123. ASTM International, ASTM D3359 - 17 Standard Test Methods for Rating Adhesion by Tape Test. Tests for Chemical, Physical, and Optical Properties; Appearance, 2017. 06.01.
124. International Organization for Standardization, ISO 10993-5 Biological Evaluation of Medical Devices - Tests for in Vitro Cytotoxicity. Biological Evaluation of Medical Devices, 2009. 3.
125. ibidi, Wound Healing and Migration Assays. ibidi Application Guide, 2018.
126. ASTM International, ASTM G59-97 Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. Corrosion of Metals; Wear and Erosion, 2014. 03.02.
127. Jones, D.A., Principles And Prevention Of Corrosion. Prentice Hill, Inc., 1996. 2nd: p.1-572.
128. Rosales-Leal, J.I., M.A. Rodriguez-Valverde, G. Mazzaglia, P.J. Ramon-Torregrosa, L. Diaz-Rodriguez, O. Garcia-Martinez, et al., Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2010. 365(1-3): p. 222-229.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw