進階搜尋


下載電子全文  
系統識別號 U0026-1501201614400800
論文名稱(中文) MicroRNAs促進由幹細胞分化成的心肌細胞的成熟過程
論文名稱(英文) Defined MicroRNAs Induces Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell Derived Cardiomyocytes
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 104
學期 1
出版年 105
研究生(中文) 李凱詩
研究生(英文) Desy S Lee
學號 S98991136
學位類別 博士
語文別 英文
論文頁數 90頁
口試委員 指導教授-謝清河
指導教授-江伯敏
召集委員-羅傳堯
口試委員-沈家寧
口試委員-黃效民
口試委員-呂佩融
中文關鍵字 幹細胞療法  心衰竭  心肌細胞  成熟  微型核糖核酸 
英文關鍵字 regenerative medicine  cardiovascular disease  stem cell-derived cardiomyocyte  maturation  microRNA 
學科別分類
中文摘要 至今,心衰竭仍是一種無法徹底治癒的嚴重病症且預後不佳。近期的研究發現幹細胞療法(stem-cells therapy)為心衰竭的治療開啟新的契機。胚胎幹細胞(embryonic stem cells)和誘導式多潛能幹細胞(induced pluripotent stem cells, iPS cells)具有潛力可無限量的提供心肌細胞作為幹細胞療法的細胞來源。然而,從這些細胞誘導分化的心肌細胞屬於未成熟的;它們不具有成熟的肌節構造(sarcomeric structure)和間隙接合蛋白(gap junction protein)、 無法共同跳動,提高了心律不整(arrhythmia)的危險性若使用它們作為治療的細胞來源。
在我們過去的研究發現,將這些由幹細胞分化成的心肌細胞與內皮細胞(endothelial cells)可以促進它們他的成熟性。然而,調控這些作用的信息傳遞因子仍是未知的。近來發現位於細胞的微型核糖核酸(microRNAs)參與了轉錄後的基因調控進而參與了心臟發育的過程。許多研究也同時證明這些微型核糖核酸在心臟發育過程裡扮演了不可或缺的腳色。本研究的目的是在發掘和探究在心肌細胞成熟過程中扮演著調控因子的微型核糖核酸。在我們的實驗當中,我們也用不一樣的方法證明這一群微型核糖核酸可幫助與加速心肌細胞的成熟。未來,藉由更深入的了解其微型核糖核酸的作用和調控可發展對於心臟疾病的新療法。
英文摘要 Advances in our ability to differentiate pluripotent stem cells into somatic cells of many lineages provide us with a platform for drug screening, disease modeling and regenerative medicine. Due to the high prevalence of cardiovascular disease, cardiac cells are of particular interest. Several outstanding groups have developed reproducible and efficient systems to differentiate pluripotent cells into cardiac cells. However, these pluripotent stem cell-derived cardiomyocytes often display the structural and functional attributes of fetal cardiomyocytes rather than adult cardiomyocytes. This significantly limits the use of these cells for applications such as drug screening or regenerative medicine. Thus, a method for increasing the maturity of pluripotent stem cell-derived cardiomyocytes is highly desirable.
Studies of anatomy and developmental biology suggest that the function of heart is considerably dependent on endothelial cells. We have shown that endothelial cells play a role in enhancing the maturation of murine ES-derived cardiomyocytes. We have identified a cluster of miRNAs (miR-125b-5p, miR-199a-5p, miR-221, and miR-222) that are upregulated in cardiomyocytes upon their coculture with endothelial cells. Exogenous addition of this combination of miRNAs was able to significantly increase the molecular, structural and functional maturation of ES-derived CMs. Bioinformatics revealed ErbB4 as the target of these four miRNAs, and a luciferase reporter assay confirmed that these four miRNAs together targeted ErbB4. This finding was further confirmed by siRNA-induced downregulation of ErbB4, resulting in the enhanced maturation of ES-CMs.
To apply these findings to human cardiomyocyte maturation, we tested the same miR combination in human ES-derived cardiomyocytes. The enforced expression of this miR-combo was able to increase maturation of ES-derived cardiomyocytes into a more adult-like state, evidenced by an increased binucleation ratio, lower ANF expression, improved respiratory capacity, more negative resting membrane potential and polarized Connexin-43. In conclusion, we present a novel approach for improving the maturity of cardiomyocytes differentiated from pluripotent stem cells. This is a significant step towards realizing the full potential of iPS and ES-derived cardiomyocytes as platforms for drug screening and disease modeling.
論文目次 摘要 i
Abstract ii
誌謝 iv
Table of Contents vi
List of Table/Figures x
Chapter 1 1
Introduction 1
1.1 Stem Cell Therapy 2
1.1.1 Pluripotent Stem Cells as Cardiomyocytes Sources 2
A. Embryonic Stem Cells 2
B. Induced Pluripotent Stem Cells 3
1.1.2 Challenges in Isolation of Cardiomyocytes 4
A. Differentiation Efficiency 4
B. Purification of ES-CMs 5
C. Maturity Status of ES-CMs 8
1.2 MicroRNA 11
1.2.2 MicroRNA: Biogenesis and Target Recognition 11
1.2.2 MicroRNA in Heart Development 12
1.3 Thesis Aim 14
Chapter 2 16
Materials and Methods 16
2.1 Cardiac Differentiation and Culture of Mouse ESCs 16
2.2 Cardiac Differentiation and Culture of Human ESCs 17
2.3 Real-time Quantitative Polymerase Chain Reaction 17
2.4 Immunostaining and Fluorescence Microscopy 18
2.5 Transmission Electron Microscopy 18
2.6 Measurement of Ca2+ Transients 19
2.7 Action Potential Measurements 19
2.8 Exiqon miRNA Microarray 20
2.9 Transient Transfection 21
2.10 Western blotting 21
2.11 Preparation of Conditioned Medium, Endothelial Cell Lysate and Extracellular Matrix 21
2.12 Dual-Luciferase Reporter Assay 21
2.13 siErbB4 Microarray 22
2.14 Data Analysis 23
Chapter 3 24
Results 24
3.1 Differentiation and purification of mouse ES-CMs 24
3.2 Coculture with endothelial cells improves the alignment of ES-CMs 24
3.3 Culture along with endothelial cells improves the maturation of ES-CMs 25
3.4 Microarray-based identification of microRNA modulated upon coculture 27
3.5 A combination of miRNAs is more effective than individual miRNA in promoting the maturation of ES-CMs 28
3.6 The introduction of miR-combo promotes the morphological maturation of ES-CMs 29
3.7 The structural maturation of ES-CMs is accompanied by enhanced functional maturation after miR-combo delivery 29
3.8 ErbB4 as a target of miR-combo 30
3.9 siRNA knockdown of ErbB4 enhanced several maturation-associated phenotypes in mES-CMs 31
3.10 The establishment of human cardiac differentiation platform 32
3.11 miR-combo transfection leads to hES-CMs structural changes in accordance to enhanced maturation 33
3.12 Effects on miR-combo on human ES-CM electrophysiological properties 34
3.13 The effects of miR-combo delivery after a longer culture period 35
Chapter 4 37
Discussions 37
4.1 Differentiation and purification of ES-CMs 37
4.2 Endothelial cells promote structural and functional maturation of ES-CMs 38
4.3 Multiple origins of endothelial cells can improve ES-CM maturity 39
4.4 Four defined microRNAs, elevated during EC coculture, sufficiently promote the maturation of mouse ES-CMs 40
4.5 ES-CM microRNA elevation appears to depend on the presence of endothelial cells 41
4.6 ErbB4 is the predicted target gene of these four microRNAs 43
4.7 ErbB4 is a known player in cardiac development and implicated in maturation 43
4.8 An extensive range of assays reveal improved maturation of human ES-CMs following transfection of miR-combo 46
4.9 Fully adult-like ES-CMs still remain elusive 47
4.10 Summary 48
4.11 Conclusion 50
References 77
參考文獻 1. Segers, V.F.M. & Lee, R.T. Stem-cell therapy for cardiac disease. Nature 451, 937-942 (2008).
2. Laflamme, M.A. & Murry, C.E. Regenerating the heart. Nat. Biotechnol. 23, 845-856 (2005).
3. Hattori, F. et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods 7, 61-66 (2010).
4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 (2006).
5. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 (1998).
6. Laflamme, M.A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015-1024 (2007).
7. van Laake, L.W. et al. Reporter-based isolation of induced pluripotent stem cell- and embryonic stem cell-derived cardiac progenitors reveals limited gene expression variance. Circ. Res. 107, 340-347 (2010).
8. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524-528 (2008).
9. Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30-41 (2009).
10. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: A primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65-78 (2001).
11. Hamazaki, T. et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497, 15-19 (2001).
12. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407-414 (2001).
13. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397-1409 (2010).
14. Mercola, M., Colas, A. & Willems, E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ. Res. 112, 534-548 (2013).
15. Anson, B.D., Kolaja, K. & Kamp, T.J. Opportunities for human iPS cells in predictive toxicology. Clin. Pharmacol. Ther. 89, 754-758 (2011).
16. Keller, G.M. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862-869 (1995).
17. Kattman, S.J. et al. Stage-specific optimization of Activin/Nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228-240 (2011).
18. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 109, E1848–E1857 (2012).
19. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524-528 (2008).
20. Mummery, C.L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ. Res. 111, 344-358 (2012).
21. Burridge, P.W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855-860 (2014).
22. Ng, E.S., Davis, R., Stanley, E.G. & Elefanty, A.G. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protocols 3, 768-776 (2008).
23. Xu, C., Police, S., Rao, N. & Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501-508 (2002).
24. Klug, M.G., Soonpaa, M.H., Koh, G.Y. & Field, L.J. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216-224 (1996).
25. Fijnvandraat, A.C. et al. Cardiomyocytes purified from differentiated embryonic stem cells exhibit characteristics of early chamber myocardium. J. Mol. Cell. Cardiol. 35, 1461-1472 (2003).
26. Metzger, J.M., Lin, W.-I. & Samuelson, L.C. Vital staining of cardiac myocytes during embryonic stem cell cardiogenesis in vitro. Circ. Res. 78, 547-552 (1996).
27. Anderson, D. et al. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol. Ther. 15, 2027-2036 (2007).
28. Dubois, N.C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011-1018 (2011).
29. Elliott, D.A. et al. NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8, 1037-1040 (2011).
30. Uosaki, H. et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS ONE 6, e23657 (2011).
31. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127-137 (2013).
32. Kim, C. et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494, 105-110 (2013).
33. Yang, X., Pabon, L. & Murry, C.E. Engineering adolescence: Maturation of human pluripotent stem cell–derived cardiomyocytes. Circ. Res. 114, 511-523 (2014).
34. Ziman, A.P., Gómez-Viquez, N.L., Bloch, R.J. & Lederer, W.J. Excitation–contraction coupling changes during postnatal cardiac development. J. Mol. Cell. Cardiol. 48, 379-386 (2010).
35. Navarrete, E.G. et al. Screening drug-induced arrhythmia using human induced pluripotent stem cell–derived cardiomyocytes and low-impedance microelectrode arrays. Circulation 128, S3-S13 (2013).
36. Yang, X. et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell. Cardiol. 72, 296-304 (2014).
37. Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30-e41 (2009).
38. Gerdes, A.M. et al. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86, 426-430 (1992).
39. Gherghiceanu, M. et al. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J. Cell. Mol. Med. 15, 2539-2551 (2011).
40. Laflamme, M.A. & Murry, C.E. Heart regeneration. Nature 473, 326-335 (2011).
41. Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355-H2363 (2003).
42. Lompré, A.M., Nadal-Ginard, B. & Mahdavi, V. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259, 6437-6446 (1984).
43. Xu, X.Q., Soo, S.Y., Sun, W. & Zweigerdt, R. Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem Cells 27, 2163-2174 (2009).
44. Saggin, L., Gorza, L., Ausoni, S. & Schiaffino, S. Troponin I switching in the developing heart. J. Biol. Chem. 264, 16299-16302 (1989).
45. Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120, 1513-1523 (2009).
46. Angst, B.D. et al. Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ. Res. 80, 88-94 (1997).
47. Shepard, T.H., Muffley, L.A. & Thayer Smith, L. Ultrastructural study of mitochondria and their cristae in embryonic rats and primate (N. nemistrina). Anat. Rec. 252, 383-392 (1998).
48. Lopaschuk, G.D. & Jaswal, J.S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovas. Pharmacol. 56, 130-140 (2010).
49. Lundy, S.D., Zhu, W.-Z., Regnier, M. & Laflamme, M.A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991-2002 (2013).
50. Drouin, E., Charpentier, F., Gauthier, C., Laurent, K. & Le Marec, H. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: Evidence for presence of M cells. J. Am. Coll. Cardiol. 26, 185-192 (1995).
51. David P, B. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).
52. Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature 432, 231-235 (2004).
53. Cobb, B.S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367-1373 (2005).
54. Harfe, B.D., McManus, M.T., Mansfield, J.H., Hornstein, E. & Tabin, C.J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. USA 102, 10898-10903 (2005).
55. Giraldez, A.J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833-838 (2005).
56. Wienholds, E., Koudijs, M.J., van Eeden, F.J.M., Cuppen, E. & Plasterk, R.H.A. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet. 35, 217-218 (2003).
57. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215-217 (2003).
58. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303-317 (2007).
59. Chen, J.-F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl. Acad. Sci. USA 105, 2111-2116 (2008).
60. da Costa Martins, P.A. et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 1567-1576 (2008).
61. Liu, N. et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242-3254 (2008).
62. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575-579 (2007).
63. Chien, K.R. Molecular medicine: MicroRNAs and the tell-tale heart. Nature 447, 389-390 (2007).
64. Takahashi, T. et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912-1916 (2003).
65. Hsieh, P.C.H. et al. Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114, 637-644 (2006).
66. Brutsaert, D.L. Cardiac endothelial-myocardial signaling: Its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83, 59-115 (2003).
67. Hsieh, P.C.H., Davis, M.E., Lisowski, L.K. & Lee, R.T. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu. Rev. Physiol. 68, 51-66 (2006).
68. Sekine, H. et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118, S145-S152 (2008).
69. Narmoneva, D.A., Vukmirovic, R., Davis, M.E., Kamm, R.D. & Lee, R.T. Endothelial cells promote cardiac myocyte survival and spatial reorganization: Implications for cardiac regeneration. Circulation 110, 962-968 (2004).
70. Chen, K. et al. Endothelial cells regulate cardiomyocyte development from embryonic stem cells. J. Cell. Biol. 111, 29-39 (2010).
71. Edsbagge, J. et al. Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. Development 132, 1085-1092 (2005).
72. Cleaver, O. & Melton, D.A. Endothelial signaling during development. Nat. Med. 9, 661-668 (2003).
73. Lompré, A.M., Nadal-Ginard, B., and Mahdavi, V. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259, 6347-6446 (1984).
74. Hu, S. et al. Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation. Circulation 124, S27-S34 (2011).
75. Miyoshi, N. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633-638 (2011).
76. Jayawardena, T.M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465-1473 (2012).
77. Hsieh, P.C., Davis, M.E., Gannon, J., MacGillivray, C. & Lee, R.T. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116, 237-248 (2006).
78. Chi, J.-T. et al. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100, 10623-10628 (2003).
79. Conway, E.M. & Carmeliet, P. The diversity of endothelial cells: a challenge for therapeutic angiogenesis. Genome Biol. 5, 207 (2004).
80. Aird, W.C. Phenotypic heterogeneity of the endothelium. Circ. Res. 100, 158-173 (2007).
81. Small, E.M., Frost, R.J.A. & Olson, E.N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022-1032 (2010).
82. Wong, S.S.Y. et al. MiR-125b promotes early germ layer specification through Lin28/let-7d and preferential differentiation of mesoderm in human embryonic stem cells. PLoS ONE 7, e36121 (2012).
83. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 103, 18255-18260 (2006).
84. Liu, X. et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ. Res. 104, 476-487 (2009).
85. Liu, X., Cheng, Y., Yang, J., Xu, L. & Zhang, C. Cell-specific effects of miR-221/222 in vessels: Molecular mechanism and therapeutic application. J. Mol. Cell. Cardiol. 52, 245-255 (2012).
86. Cardinali, B. et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 4, e7607 (2009).
87. Ge, Y., Sun, Y. & Chen, J. IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell. Biol. 192, 69-81 (2011).
88. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654-659 (2007).
89. Katakowski, M., Buller, B., Wang, X., Rogers, T. & Chopp, M. Functional microRNA is transferred between glioma cells. Cancer Res. 70, 8259-8263 (2010).
90. Fuller, S.J., Sivarajah, K. & Sugden, P.H. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J. Mol. Cell. Cardiol. 44, 831-854 (2008).
91. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390-394 (1995).
92. Lee, K.-F. et al. Requirement for neuregulin receptor ErbB2 in neural and cardiac development. Nature 378, 394-398 (1995).
93. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386-390 (1995).
94. Zhao, Y.-Y. et al. Neuregulin signaling in the heart: Dynamic targeting of ErbB4 to caveolar microdomains in cardiac myocytes. Circ. Res. 84, 1380-1387 (1999).
95. Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257-270 (2009).
96. Zhang, Y. et al. Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev. 24, 1746-1757 (2010).
97. Kim, D.-H. et al. Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integr. Biol. 4, 1019-1033 (2012).
98. Nunes, S.S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781-787 (2013).
99. Chen, V.C., Stull, R., Joo, D., Cheng, X. & Keller, G. Notch signaling respecifies the hemangioblast to a cardiac fate. Nat. Biotechnol. 26, 1169-1178 (2008).
100. Shimoji, K. et al. G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell 6, 227-237 (2010).
101. Yuasa, S. et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol. 23, 607-611 (2005).
102. Chen, H.-S.V., Kim, C. & Mercola, M. Electrophysiological challenges of cell-based myocardial repair. Circulation 120, 2496-2508 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-01-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw