進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1501201612342500
論文名稱(中文) 以質點網格法探討產生孤子的機制 - 關於太空天氣探測
論文名稱(英文) Particle-in-Cell Simulation of Langmuir Solitons’ Generation Mechanism - Towards Space Weather Forecast
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 104
學期 1
出版年 104
研究生(中文) 張書豪
研究生(英文) Shu-Hao Chang
電子信箱 bpp1213@gmail.com
學號 LA6021030
學位類別 碩士
語文別 英文
論文頁數 58頁
口試委員 指導教授-西村泰太郎
口試委員-河森榮一郎
口試委員-藏滿康浩
中文關鍵字 Langmuir 孤立波  Zakharov方程式  非線性Schrödinger方程式  震盪雙流不穩定  質點網格法  第三型噴射  太空天氣觀測 
英文關鍵字 Langmuir soliton  Zakharov equation  nonlinear Schrödinger equation  oscillating two stream instability  Particle-in-Cell  Type-III emission  Space weather forecast 
學科別分類
中文摘要 太空天氣預報是非常重要的,根據預報可以避免地球上的設施遭受損壞。在這裡我們專注在Langmuir孤立波的生成機制。Langmuir孤立波可以藉由太陽爆發所引起的第三型噴射而生成,而第三型噴射是與Langmuir擾動所給予的信號藉著無線電波傳遞至地球有關。而這些現象我們將用質點網格法來進行模擬研究。
一開始我們先模擬線性與非線性的Landau阻尼,並與 C. Z. Cheng 1976年的論文進行對照。接下來使用具有高能量的非高斯分布來試著產生Langmuir孤立波。這個具有高能量的非高斯分布所產生的不穩定狀態能讓我們對於基本的震盪雙流不穩定有所了解。
接下來我們對Langmuir孤立波所產生的頻譜(k-光譜)進行詳細的討論。為了得到孤立波的初始條件,我們使用Zakharov方程式和非線性Schrödinger方程式獲得離子密度和電場分布,至於電子密度可以藉由逆Gauss’s定律推得。此外,我們使用外部射頻電場來產生孤立波(參考Valeo 1974年的論文),並對孤立波崩潰後進行觀測後可以獲得震盪雙流不穩定的資訊。在論文的最後,我們對震盪雙流不穩定的飽和狀態進行探討,並藉由仔細觀察相空間分布可發現速度分布的平坦化。
英文摘要 Space weather forecast is crucial to avoid the damage on the earth. In this work, the generation mechanism of Langmuir solitons is investigated. Langmuir solitons can be generated by solar bursts induced type III emission (Goldman, 1984) which is closely related to Langmuir turbulence giving precursor signals by radio wave reaching the earth. The behavior of Langmuir soliton generation mechanism is investigated by Particle-in-Cell simulation.
As a preliminary study, linear and nonlinear Landau damping are benchmarked with a paper by C. Z. Cheng and G. Knorr (Cheng, 1976). The evolution of Non-Gaussian distributions with high-energy components as the generation mechanism of Langmuir soliton is studied. The bump-on-tail instability which provides us with the base of oscillating two stream instabilities (OTSI) is resumed.
During the Langmuir solitons generation the spectrum of wave vectors (k-spectrum) is studied in detail. For the initial condition, Analytical solution of Zakharov equations and nonlinear Schrödinger (NLS) equation is employed, first. To employ the ion density and the electric field for soliton profiles, the electron density is obtained by inverting Gauss’s law. Furthermore, the solitons by external Radio-Frequency (RF) electric field (Valeo, 1974) are generated. Onset of oscillating two stream instability is observed after the collapse of solitons. The saturation mechanism of OTSI is discussed and understood as flattening of the distribution function by carefully looking into phase space dynamics.
論文目次 摘要 1
Abstracts 2
Contents 3
List of Figures 4
Chapter 1 Introduction 8
Chapter 2 Theoretical and Numerical model 11
2.1 Normalized Vlasov and Poisson Equations 11
2.2 Ponderomotive Force 12
2.3 Derivation of Zakharov Equations and Nonlinear Schrödinger Equation 14
Chapter 3 Particle-in-Cell simulation 20
3.1 Particle’s Initial Loading 21
3.2 Gathering Particles 23
3.3 Electric Field for Self-Consistent Simulation 25
3.4 Time Advancing Particles’ Equation of Motion 28
3.5 Benchmarking of Landau Damping 29
3.6 Benchmarking of Bump-on-tail Instability 34
Chapter 4 Numerical Simulation of Langmuir Solitons 36
4.1 Numerical Simulation by Taking Zakharov Solution as an Initial Condition 36
4.2 Soliton Generated by Radio-Frequency Electric Field 43
4.3 Observation of Oscillating Two Stream Instability 50
Chapter 5 Summary and Future work 54
Reference 56
參考文獻 M. Abramowitz and I. A. Stegun, ” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, Dover Publsihing, pp. 20 and pp. 933 (1964).

I. B. Bernstein, J. M. Greene, and M. D. Kruskal,”Exact Nonlinear Plasma Oscilliaions”, Phys. Rev. 108, 546 (1957).

B. Bezzerides and D. F Dubois, “Electron heating and Landau damping in intense localized electric fields”, Phys. Rev. Lett. 34, 1381 (1975).

C. K. Birdsall and A. B. Langdon, “Plasma Physics via Computer simulation”, Taylor & Francis Publishing, pp. 13 (1991).

F. F. Chen, “Introduction to Plasma Physics and Controlled Fusion”, Plenum, New York, pp. 309-324 (1984).

Y. A. Chen, ”Theoretical and computational studies of soliton acceleration in plasma and nonlinear dielectric medium”, Master’s thesis National Cheng Kung University (2015).

Y. H. Chen, ” Effects of high energy electrons on electrostatics Vlasov-Poisson simulation”, Master’s thesis National Cheng Kung University (2013).

Y. H. Chen, Y. Nishimura, and C. Z Cheng, “Kappa Distribution Function Effects on Landau Damping in Electrostatic Vlasov Simulation”, Terrestrial, Atmospheric and Oceanic Sciences 24, 273 (2013).

C. Z. Cheng and G. Knorr, “Integration of Vlasov Equation in Configuration Space”, J. Comput. Phys. 22, 330 (1976).

B. V. Chirikov, “A Universal Instability of Many-Dimensional Oscillator Systems”, Phys. Rep. 52, 263 (1979).

K. V. Chukbar and V. V. Yan’kov, “Langmuir Solitons in an Inhomogeneous Plasma”, Soviet Journal of Plasma Physics 3, 780 (1977).

B. D. Fried and S. D. Conte, “The Plasma Dispersion Function”, Academic Press, pp. 419 (1961).

M. V. Goldman, “Strong turbulence of plasma waves”, Rev. Mod. Phys. 56, 274 (1984).

V. V. Gorev and A. S. Kingsep, “Interaction of Langmuir solitons with plasma particles”, Sov. Phys. JETP 39, 1008 (1974).

H. C. Kim, “Development of Cavitons and Trapping of rf Fields”, Phys. Rev. Lett. 33, 886 (1974).

H. C. Kim, R. L. Stenzel, and A. Y. Wong, “Development of “Cavitons” and Trapping of RF Field”, Phys. Rev. Lett. 33, 886 (1974).

L. D. Landau, “On the vibration of the electronic plasma”, J. Phys. (U.S.S.R) 10, 25 (1946).

C. H. Li, J. K. Chao, and C. Z. Cheng, “One-dimensional Vlasov simulation of Langmuir solitons”, Phys. Plasmas 2, 4195 (1995).

G. J. Morales, Y. C. Lee, and R. B. White, “Nonlinear Schrödinger-Equation Model of The Oscillating Two-Stream Instability”, Phys. Rev. Lett. 32, 457 (1974).

D. R. Nicholson, “Introduction to Plasma Theory”, 2nd ed. Krieger Publishing, pp. 73-82, pp. 120 and pp. 171-181 (1992).

K. Nishikawa, ”Parametric Excitation of Coupled Waves 1. General Formulation” J. Phys. Soc. Jpn., 24, 916 (1968).

N. R. Pereira, R. N. Sudan, and J. Denavit, “Numerical simulations of one-dimensional solitons”, Phys. Fluids 20, 271 (1977).

R. D. Ruth, “A canonical integration technique”, IEEE Trans. Nucl. Sci. 30, pp. 2669 (1983).

Space Weather Prediction Center, “http://www.swpc.noaa.gov/” (2015).

R. M. Thorne and D. Summers, “Landau damping in space plasmas”, Phys. Fluids B 3, 2117 (1991).

E. J. Valeo and W. L. Kruer, “Soliton and Resonant Absorption”, Phys. Rev. Lett. 33, 750 (1974).

J. G. Wang, G. L. Pain, D. F. Dubois, and H. A. Rose, “One-dimensional simulation of Langmuir collapse in a radiation-driven plasma”, Phys. Plasmas 1, 2531 (1994).

J. G. Wang, G. L. Pain, D. F. Dubois, and H. A. Rose, “Vlasov simulation of modulational instability and Langmuir collapse”, Phys. Plasmas 2, 1129 (1995).

J. G. Wang, G. L. Pain, D. F. Dubois, and H. A. Rose, “Comparison of Zakharov simulation and open boundary Vlasov simulation of strong Langmuir turbulence”, Phys. Plasmas 3, 111 (1996).

V. E. Zakharov, “Collapse of Langmuir Waves”, Sov. Phys. JETP 35, 908 (1972).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-01-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw