進階搜尋


下載電子全文  
系統識別號 U0026-1501201611304800
論文名稱(中文) 中孔洞氧化矽包覆奈米碳管/環氧樹脂複合材料於半導體封裝之應用與研究
論文名稱(英文) Application and Study of Mesoporous Silica Coated Multiwall Carbon Nanotubes-Epoxy Nanocomposites in Semiconductor Packaging
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 104
學期 1
出版年 104
研究生(中文) 鍾旻華
研究生(英文) Min-Hua Chung
學號 L38981141
學位類別 博士
語文別 英文
論文頁數 97頁
口試委員 指導教授-林弘萍
口試委員-鄭秀英
口試委員-陳修維
口試委員-何宗漢
口試委員-侯聖澍
中文關鍵字 奈米碳管  中孔洞氧化矽  環氧樹脂複合材料  熱傳導特性  機械特性 
英文關鍵字 Carbon nanotubes  Mesoporous silica  Epoxy nanocomposites  Thermal properties  Mechanical properties 
學科別分類
中文摘要 本論文旨在探討中孔氧化矽包覆奈米碳管與環氧樹脂複合材料之製備與材料特性分析以及其對於半導體封裝材料之相關應用性。本研究主要可分為兩部分:
第一部主要在探討中孔洞氧化矽包覆奈米碳管與環氧樹脂之複合材料於機械性質與熱傳導性能的表現。我們利用矽酸鈉作為氧化矽之來源,利用明膠作為介面活性劑,成功地製備出中孔洞氧化矽包覆奈米碳管之複合材料,並透過電子顯微鏡與傅立葉轉換紅外光譜儀確認中孔洞氧化矽於奈米碳管表面的包覆性。對於機械特性與熱傳導特性分析的部分,我們利用動態機械分析儀,熱機械分析和熱導率分析儀量測複合材料的性能表現。從數據結果可知,儲能模量與熱導係數會隨著中孔洞氧化矽包覆奈米碳管之複合材料的添加量增加而提升(0.25,0.5,1.0與2.0wt.%)。此效果主要來自奈米碳管藉由帶有極性的氧化矽包覆,有效地改善奈米碳管在環氧樹脂內的分散性。而熱膨脹係數則隨著添加量增加而逐漸減小,此現象主要是因為氧化矽與奈米碳管間的偶極-偶極交互作用以及氧化矽的中孔洞結構有效地限制住環氧樹脂的熱流動所致。
第二部分的研究在於探討矽烷修飾中孔洞氧化矽包覆之奈米碳管,用以改善其與環氧樹脂之相容性與分散性。中孔洞氧化矽表面因帶有矽烷醇(silanol)分子,故可作為矽烷分子(3-glycidoxy propyltrimethoxysilane, GPTMS)進行修飾之平台。而經由矽烷修飾後之中孔洞氧化矽包覆奈米碳管材料,因相容性與分散性的提升,使其可被大量混入環氧樹脂(約20wt.%),並可維持相對的低黏度與高流動特性。對於機械性質與熱傳導性質的表現上,由於矽烷修飾改善了中孔洞氧化矽與環氧樹脂之相容性,並且藉由矽烷分子與硬化劑間形成的鍵結,有效地提升了彼此的交互作用力。因此,在儲存彈性模量,熱導率和降低的熱膨脹係數的效果,依序為:GPTMS-modified CNTs@MS > CNTs@MS >> CNTs。
英文摘要 The objectives of this research are the preparation and characterization of mesoporous silica coated multi-wall carbon nanotubes/epoxy nanocomposites for application to the semiconductor encapsulant materials. There two parts in this dissertation.
The first part of this dissertation demonstrates the effect of mesoporous silica coated multi-wall carbon nanotuebs (CNTs@MS) on the mechanical and thermal properties of epoxy nanocomposites. CNTs@MS was prepared using sodium silicate as the silica source and gelatin as the surface-activation agent. The effects of CNTs@MS on the mechanical and thermal properties of epoxy composite are investigated. The electron microscopy images and Fourier transform infrared spectra demonstrate integral coating of the mesoporous silica on the CNTs. Because of the polar silica shell, the CNTs@MS exhibited uniform dispersion in epoxy-based nanocomposite. The thermal and mechanical properties of nanocomposites were characterized using dynamic mechanical analysis (DMA), thermo-mechanical analysis (TMA) and thermal conductivity measurement. These results show that the storage modulus and thermal conductivity increased along with the amount of CNTs@MS (0.25, 0.5, 1.0 and 2.0 wt%). The coefficient of thermal expansion decreased gradually, because the dipole–dipole interactions between the silica and epoxy polymer and confinement space of the mesoporous structure reduced the thermal mobility of the epoxy polymer inside the mesopore space.
In the second part of this dissertation, we studied silane modification on CNTs@MS for improving compatibility and dispersity in epoxy matrices. The mesoporous silica shell with silanol groups on the CNTs provides a platform to attach silane molecules (e.g. 3-glycidoxy propyltrimethoxysilane, GPTMS) that enable the CNTs@MS to be incorporated into the epoxy matrix at a content of up to 20 wt.%. The viscosities of the CNTs@MS and GPTMS modified CNTs@MS epoxy composites are much lower than that of the CNTs epoxy, and then the voids in the GPTMS modified CNTs@MS epoxy composites are most significantly reduced. The addition of the CNTs@MS and GPTMS modified CNTs@MS into the epoxy composite can improve the mechanical and thermal properties. The results show that the GPTMS modified CNTs@MS improved the filler-epoxy matrix interaction, and has better compatibility in epoxy than the CNTs@MS. As the surface compatibility and interaction strength increase in the epoxy matrix, the enhancement in storage modulus, thermal conductivity and reduction in the coefficient of thermal expansion are in the following order: GPTMS-modified CNTs@MS > CNTs@MS >> CNTs.
論文目次 Table of Contents

Chapter 1 Introduction 1
1.1 Preamble 1
1.2 Thesis objectives 2
Chapter 2 Literature survey and theoretical background 4
2.1 Electronic packaging and flip chip technology 4
2.2 Overview of underfill materials 6
2.2.1 Underfill materials in flip chip application 6
2.2.2 Composition of epoxy underfill 7
2.3 Introduction of carbon nanotubes 12
2.3.1 Structure of carbon nanotubes 12
2.3.2 Properties of carbon nanotubes 14
2.4 Introduction of mesoporous material 17
2.4.1 Mesoporous silica 17
2.4.2 Introduction of surfactant 18
2.4.3 Introduction of silicate 21
2.5 Functionalization of carbon nanotubes for polymer composite preparation.....24
2.5.1 Covalent functionalization of carbon nanotubes 25
2.5.2 Non-covalent functionalization of carbon nanotubes 27
2.5.3 Mesoporous silica coated carbon nanotubes 28
Chapter 3 Effect of Mesoporous Silica Coated Multi-wall Carbon Nanotuebs on the Mechanical and thermal Properties of Epoxy Nanocomposites 31
3.1 Introduction 31
3.2 Experiments 34
3.2.1 Materials 34
3.2.2 Coating mesoporous silica on CNTs 35
3.2.3 Preparation of CNTs@MS/epoxy composite 37
3.2.4 Characterization 38
3.3 Results and Discussions 41
3.3.1 Characterization on the CNTs@MS 41
3.3.2 Characterization on the dispersion 44
3.3.3 Thermal-mechanical properties 48
3.3.4 Thermal conductivity properties 52
3.4 Summary 55
Chapter 4 Silane Modification on Mesoporous Silica Coated Multi-wall Carbon Nanotubes for Improving Compatibility and Dispersity in Epoxy Matrices 56
4.1 Introduction 56
4.2 Experiments 59
4.2.1 Materials 59
4.2.2 Silanization of the CNTs@MS 60
4.2.3 Preparation of epoxy composite 62
4.2.4 Characterization 62
4.3 Results and Discussion 65
4.3.1 Characterization on the CNTs@MS 65
4.3.2 Viscosity properties 68
4.3.3 Charaterization of the dispersion 71
4.3.4 Thermo-mechanical properties 73
4.3.5 Thermal condutivity properties 76
4.4 Summary 80
Chapter 5 Conclusions and future work 81
5.1 Conclusions 81
5.2 Future work 83

Reference 85

參考文獻 REFERENCE

[1] R. R. Tummala, E. J. Rymaszewski, A. G. Klopfenstein. Microelectronics Packaging Handbook, Part II, Second ed. Norwell: Kluwer Academic Publishers, 1997, chapter 7, 8-11.
[2] J. H. Lau. Chip on Board - Technologies for Multichip Modulues, New York: Van
Nostrand Reinhold, 1994, chapter 1.4, 29-35
[3] Y. Sun, Z. Zhang, C. P. Wong. Development of High Performance Photo-curable Nanocomposites for Electronics Packaging, Electronic Packaging Technology Conference, 2005, 2, 723-728
[4] L. F. Miller. Controlled Collapse Reflow Chip Joining, IBM Journal of Research and Development, 1969, 13, 239-250
[5] Y. Sun, C. P. Wong. Study and characterization on the nanocomposite underfill for flip-chip applications, Electronic Components and Technology Conference, 2004, 1, 477-483
[6] Z. Zhang, C. P. Wong. Recent Advances in Flip-Chip Underfill: Materials, Process, and Reliability. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2004, 7, 515-24
[7] M. Chew, M. Z. Ding, E. Wai, S. C. Chong, V. S. Rao, M. W. D. Rhee. Characterization of thermally conductive underfill materials for high performance flip-chip applications. Electronic Packaging Technology Conference, 2012, 283-290
[8] H. Li, K. I. Jacob, C. P. Wong. An improvement of thermal conductivity of underfill materials for flip-chip packages, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2003, 26, 25-32
[9] J. J. Stevens. Epoxy Resin Technology. New York: Interscience, 1968, chapter 8, 155-157.
[10] B. Ellis. Chemistry and Technology of Epoxy Resins, Glasgow: Blackie Academic & Professional, an imprint of Chapman & Hall, 1993 chapter 1, 1-36.
[11] Curing Agents for Epoxy Resin. Three Bond Technical News Issued December 20, 1990, 1-10
[12] Y. Sun, C. P.Wong. Room Temperature Stable Underfill with Novel Latent Catalyst for Wafer Level Flip-Chip Packaging Applications, Electronic Components and Technology Conference, 2006, 1905-1910
[13] Y. P. Zheng, Y. Zheng, R. C. Ning. Effects of nanoparticles SiO2 on the performance of nanocomposites, Material Letters, 2003, 57, 2940-2944
[14] S. T. Kang, S. I. Hong, C. R. Choe, M. Park, S. H. Rim, J. K. Kim. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process, Polymer, 2001, 42, 879-887
[15] S. Iijima. Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58
[16] D. S. Bethune, c. H. Klang, M. S. De Vries. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363, 605-607
[17] M. S. Dresselhaus, G. Dresselhaus, R. Saito. Physics of carbon nanotubes, Carbon, 1995, 33, 883-891
[18] S. Reich, C. Thomsen, J. Maultzsch. Carbon nanotubes: basic concepts and physical properties, New York: Wiley-VCH, 2004, 31-40
[19] C. N. R. Rao, R. Voggu, A. Govindaraj. Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties, Nanoscale, 2009, 1, 96-105
[20] C. T. White, T. N. Todorov. Carbon nanotubes as long ballistic conductors, Nature, 1998, 393, 240-241
[21] E. Brown, L. Hao, John C. Gallop, John C. Macfarlane. Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes, Applied Physics Letters, 2005, 87, 023107
[22] H. Y. Chiu, V. V. Desphande, H. W. Ch. Postma, C. N. Lau, C. Mikó, L. Forró, M. Bockrath. Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes, Physical review letters, 2005, 95, 226101
[23] B. I. Yakobson, P. Avouris. Mechanical properties of carbon nanotubes. Topics in Applied Physics, 2001, 80, 287-327
[24] D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, R. S. Ruoff. Mechanics of carbon nanotubes, Applied Mechanics Reviews, 2002, 55, 495-533
[25] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287, 637-640
[26] M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Physical Review Letters, 2000, 84, 5552-5555
[27] B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R. O. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Materials Science and Engineering A, 2002, 334, 173-178
[28] C. F. Cornwell, L. T. Wille. Elastic properties of sinle-walled carbon nanotubes in compression, Solid State Communications, 1997, 101, 555-558
[29] S. J. Tans, R. M. Alwin, Verschueren, C. Dekker. Room-temperature transistor based on a single carbon nanotube, Nature, 393, 49-52
[30] B. Q. Wei, R. Vajtai, P. M. Ajayan. Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, 2001, 79, 1172-1174
[31] IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure and Applied Chemistry, 1972, 31, 578
[32] B. Hanns. Process for producing silica in the form of hollow spheres, US patent publication 3383172A, 04-Feb-1964
[33] V. Chiola. Process for producing low-bulk density silica, US patent publication 3556725A, 19-Jan-1971
[34] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials, Bulletin of The Chemical Society of Japan, 1990, 63, 988-992
[35] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712
[36] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D.Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.Higgins, J. L. Schlenker. A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 1992, 114, 10834-10843
[37] M. Chatterjee, T. Iwasaki, Y. Onodera, H. Hayashi, Y. Ikushima, T. Nagase, T. Ebina. Hydrothermal synthesis and characterization of copper containing crystalline silicate mesoporous materials from gel mixture, Applied Clay Science, 2004, 25(3-4), 195-205
[38] T. F. Todros, Surfactants, Academic Press, 1984, 46-47
[39] A. G. Ward, A. Court, The Science and Technology of Gelatin, Academic Press, 1977
[40] H. P. Lin, C. Y. Mou. Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica, Accounts of Chemical Research, 2002, 35, 927-935
[41] C. J. Brinker, G. W. Scherer. Sol→gel→glass: I. Gelation and gel structure, Journal of Non-Crystalline Solids, 1985, 70, 301-322

[42] E. T. Thostenson, Z. F. Ren, T. W. Chou. Advances in the science and technology of CNTs and their composites: a review, Composites Science and Technology, 2001, 61, 1899–1912
[43] P. C. Ma, N. A. Siddiqui, G. Marom, J. K. Kim. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites: Part A, 2010, 41, 1345-1367
[44] P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco, M. Prato. Organic functionalisation and characterisation of single-walled carbon nanotubes, Chemical Society Reviews, 2009, 38, 2214-2230
[45] V. Georgakilas, A. Bourlinos, D. Gournis, T. Tsoufis, C. Trapalis, A. Mateo-Alonso, M. Prato. Multipurpose Organically Modified Carbon Nanotubes: From Functionalization to Nanotube Composites, Journal of the American Chemical Society, 2008, 130, 8733-8740
[46] F. Avile´s, J. V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas- Coronado. Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon, 2009, 47, 2970-2975
[47] P. C. Ma, J. K. Kim, B. Z. Tang. Functionalization of carbon nanotubes using a silane coupling agent, Carbon, 2006, 44, 3232–3238
[48] K. Yang, M. Y. Gu, Y. P. Guo, X. F. Pan, G. H. Mu. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, Carbon, 2009, 47, 1723-1737
[49] M. A. Hamon, H. Hui, P. Bhowmik. Ester-functionalized soluble single-walled carbon nanotubes, Applied Physics A: Materials Science & Processing, 2002, 74, 333–338
[50] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley. Fullerene pipes, Science, 1998, 280, 1253–1256
[51] J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, G. C. Walker. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers, Journal of the American Chemical Society, 2002, 124, 9034-9035
[52] W. H. Yi, A. Malkovskiy, Q. H. Chu, A. P. Sokolov, M. L. Colon, M. Meador, Y. Pang. Wrapping of Single-Walled Carbon Nanotubes by a π-Conjugated Polymer: The Role of Polymer Conformation-Controlled Size Selectivity, Journal of Physical Chemistry B, 2008, 112, 12263-12269
[53] L. Vaisman, H. D. Wagner, G. Marom. The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, 2006, 128-130, 37-46
[54] R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. S. Shim, Y. M. Li, W. Kim, P. J. Utz, H. J. Dai. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors, Proceedings of the National Acasemy of Sciences, 2003, 100, 4984-4989
[55] A. Hirsch. Functionalization of single-walled carbon nanotubes, Angewandte Chemie International Edition, 2002, 41, 1853-1859
[56] P. Liu. Modifications of carbon nanotubes with polymers, European Polymer Journal, 2005, 41, 2693-2703
[57] J. Liu, O. Bibari, P. Mailley, J. Dijon, E. Rouviére, F. S. Starace, P. Caillat, F. Vinet, G. marchand. Stable non-covalent functionalisation of multi-walled carbon nanotubes by pyrene–polyethylene glycol through π–π stacking, New Journal of Chemistry, 2009, 33, 1017-1024
[58] D. L. Shi, J. Lian, P. He, L. M. Wang, F. Xiao, L. Ying, M. J. Schulz, D. B. Mast. Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites, Applied Physics Letters, 2003, 83, 5301-5303
[59] A. J. Paula, D. Stéfani, A. G. Souza Filho, Y. A. Kim, M. Endo, O. L. Alves. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si–O–C bonds, Chemistry - A European Journal, 2011, 17, 3228-3237
[60] K. L. Ding, B. J. Hu, Y. Xie, G. M. An, R. T. Tao, H. G. Zhang, Z. M. Liu. A simple route to coat meso-porous SiO2 layer on carbon nanotubes, Journal of Materials Chemistry, 2009, 19, 3725-3731.
[61] M. Zhang, X. H. Zhang, X. W. He, L. X. Chen, Y. K. Zhang. A facile method to coat mesoporous silica layer on carbon nanotubes by anionic surfactant. Materials Letters, 2010, 64, 1383-1386
[62] W. Cui, F. P. Du, J. C. Zhao, W. Zhang, Y. K. Yang, X. L. Xe, Y. W. Mai. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes, Carbon, 2011, 49, 495-500
[63] S. N. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, T. Tatsumi. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure, Nature Materials, 2003, 2, 801-805
[64] M. Heimann, M. Wirt-Ruetters, B. Boehme, K. J. Wolter. Investigation of Carbon Nanotubes Epoxy Composites for Electronics Packaging, Electronic Components and Technology Conference, 2008, 1731-1736
[65] M. T. Byrne, Y. K. Gun’ko. Recent advances in research on carbon nanotube-polymer composites, Advanced Materials, 2010, 22, 1672-1688
[66] C. Baudot, C. M. Tan. Covalent functionalization of carbon nanotubes and their use in dielectric epoxy composites to improve heat dissipation, Carbon 2011, 49, 2362-2369
[67] K. Yang, M. Y. Gu, Y. P. Guo, X. F. Pan, G. H. Mu. Effect of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composite, Carbon, 2009, 47, 1723-1737
[68] P. C. Ma, J. K. Kim, B. Z. Tang. Effect of silane functionalization on the properties of carbon nanotube /epoxy nanocomposites, Composites Science and Technology, 2007, 67, 2965-2972
[69] J. Zhu, H. Q. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano, E. V. Barrera. Reinforcing epoxy polymer composites through covalent integration of functionalied nanotubes, Advanced Functional Materials, 2004, 14, 643-648
[70] S. Y. Wu, S. M. Yuen, C. C. Ma, C. L. Chiang, Y. L. Huang, H. H. Wu, C. C. Teng, C. C. Yang, M. H. Wei. Preparation, morphology, and properties of silane-modified MWCNTS/epoxy composites, Journal of Applied Polymer Science, 2010, 115, 3481-3488
[71] J. G. Wang, Z. P. Fang, A. J. Gu, L. H. Xu, F. Liu. Effect of amino functionalization of multi-wall carbon nanotubes on dispersion with epoxy resin matrix, Journal of Applied Polymer Science, 2006, 100, 97-104
[72] P. C. Ma, J. K. Kim, B. Z. Tang. Functionalization of carbon nanotubes using a silane coupling agent, Carbon, 2006, 44, 3232-3238
[73] F. Avilés F, J. V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado. Evaluation of mild acid oxidation treatments for MWCNTS functionalization, Carbon, 2009, 47, 2970-2975
[74] K. Balasubramanian, M. Burghard. Chemically functionalized carbon nanotubes, Small, 2005, 2, 180-192
[75] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, G. G. Andersson. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces, Journal of Physical Chemistry C, 2012, 116, 6289-6297
[76] Z. A. Othman, A. W. Apblett. Synthesis of mesoporous silica grafted with 3-glycidoxypropyltrimethoxy-silane, Materials Letters, 2009, 63, 2331-2334
[77] M. Lavorgna, V. Romeo, A. Martone, M. Zarrelli, M. Giordano, G. G. Buonocore, M. Z. Qu, G. X. Fei, H. S. Xia. Silanization and silica enrichment of multiwalled carbon nanotubes: Synergistic effects on the thermal-mechanical properties of epoxy nanocomposites, European Polymer Journal, 2013, 49, 428-438
[78] F. Avilés, C. A. Sierra-Chi, A. Nistal, A. May-Pat, F. Rubio, J. Rubio. Influence of silane concentration on the silanization of multiwall carbon nanotubes, Carbon 2013, 57, 520-529
[79] J. J. Lin, X. D. Wang. Preparation, microstructure, and properties of novel low-k brominated epoxy/meso-porous silica composites. European Polymer Journal, 2008, 44, 1414-1427
[80] W. Zheng, Y. F. Zheng. Gelatin-functionalized carbon nanotubes for the bioelectrochemistry of hemoglobin. Electrochemistry Communications, 2007, 9, 1619-1623
[81] Y. C. Lin, C. H. Hsu, H. P. Lin, C. Y. Tang, C. Y. Lin. Preparation of mesoporous silica and carbon using gelatin or gelatin-phenol-formaldehyde polymer blend as template, Chemistry Letters, 2007, 36, 1258-1259
[82] N. Suzuki, S. Kiba, Y. Yamaushi. Fabrication of mesoporous silica KIT-6/polymer composite and its low thermal expansion property. Materials Letters, 2011, 65, 544-547
[83] S. Kiba, N. Suzuki, Y. Okawauchi, Y. Yamauchi. Prototype of low thermal expansion material: fabrication of mesoporous silica/polymer composites with densely filled polymer inside mesopore space, Chemistry Asian Journal, 2010, 5, 2100-2105
[84] L. M. Chen, Using Surface-Activation and Hard-Templating Methods to Prepare CNT@ or Silica Sphere@Mesoporous Silica, Mesoporous Zeolite and Mesoporous Carbon and Metal Oxide Hollow Spheres, 2012, chapter 4, 63-73
[85] J. H. Hong, J. W. Lee, C. K. Hong, S. E. Shim. Improvement of thermal conductivity of poly(dimethyl siloxane) using silica-coated multi-walled carbon nanotube. Journal of Thermal Analysis and Calorimetry, 2010, 101, 297-302
[86] J. E. Peter, D. V. Papavassiliou, B. P. Grady. Unique thermal conductivity behavior of single-walled carbon nanotube-polystyrene composites, Macromolecules, 2008, 41, 7274-7277
[87] S. Y. Yang, C. C. Ma, C. C. Teng, Y. W. Huang, S. H. Liao, Y. L. Huang, H. W. Tien, T. M. Lee, K. C. Chiou. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, Carbon, 2010, 48, 592-603
[88] C. E. Nan, G. Liu, Y. Lin, M. Li. Interface effect on thermal conductivity of carbon nanotube composite, Applied Physics Letters, 2004, 16, 3549-3951
[89] Y. S. Song, J. R. Youn. Influence of dispersion state of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, 2005, 43, 1378-1385
[90] S. Ju, Z. Y. Li. Theory of thermal conductance in carbon nanotube composite, Physics Letters A 2006, 353, 194-197
[91] M. Barikani, I. Hasanzadeh. Effect of different chemical modification systems on thermal and electrical conductivity of functionalized multiwall carbon nanotube/epoxy nanocomposites, Polymer-Plastics Technology and Engineering, 2013, 52, 869-876
[92] E. T. Thostenson, Z. F. Ren, T. W. Chou. Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 2001, 61, 1899-1912
[93] M. J. Biercuk, M. C. Liaguno, M. Radosavljevic , J. K. Hyun, A. T. Johnson, J. E. Fischer. Carbon nanotube composites for thermal management, Applied Physics Letters, 2002, 80, 2767-2769
[94] J. N. Coleman, U. Khan, Y. K. Gun’ko. Mechanical reinforcement of polymers using carbon nanotubes, Advanced Materials, 2006, 18, 689-706
[95] K. T. Lau, D. Hui. Effectiveness of using carbon nanotubes as nano -reinforcements for advanced composite structure, Carbon 2002, 40, 1605-1606
[96] Y. J. Qin, L. Q. Liu, J. H. Shi, W. Wu, J. Zhang, Z. X. Guo, Y. F. Li, D. B. Zhu. Large-scale preparation of solubilized carbon nanotubes, Chemistry of Materials, 2003, 15, 3256-3260
[97] L. Guadagno, B. De Vivo, A. Di Bartolomeo, P. Lamberti, A. Sorrentino, V. Tucci, L. Vertuccio, V. Vittoria. Effects of functionalization on the thermo- mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites, Carbon, 2011, 49, 1919-1930
[98] K. K. Kim, S. M. Yoon, J. Y. Choi, J. Lee, B. K. Kim, J. M. Kim, J. H. Lee, U. Paik, M. H. Park, C. W. Yang, K. H. An, Y. Chung, Y. H. Lee. Design of dispersants for dispersion of carbon nanotubes in an organic solvent, Advanced Functional Materials, 2007, 17, 1775-1783
[99] Q. P. Feng, X. J. Shen, J. P. Yang, S. Y. Fu, Y. W. Mai, K. Friedrich. Synthesis of epoxy composites with high carbon nanotube loading and effects of tubular and wavy morphology on composite strength and modulus, Polymer, 2011, 52, 6037-6045
[100] Q. P. Feng, J. P. Yang, S. Y. Fu, Y. W. Mai. Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity, Carbon, 2010, 48, 2057-2062
[101] Q. Wang, J. F. Dai, W. X. Li, Z. Q. Wei, J. L. Jiang, Coupling effects in bending, buckling and free vibration of generally laminated composite beams, Composites Science and Technology, 2008, 68, 1664-1670

[102] C. H. Tseng, C. C. Wang, C. Y. Chen. Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites, Chemistry of Materials, 2007, 19, 308-315
[103] S. Y. Fu, Z. K. Chen, S. Hong, C. C. Han. The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths, Carbon, 2009, 47, 3192-3200
[104] M. H. Chung, L. M. Chen, W. H. Wang, Y. S. Lai, P. F. Yang, H. P. Lin. Effects of mesoporous silica coated multi-wall carbon nanotubes on the mechanical and thermal properties of epoxy nanocomposites, Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2813-2819
[105] J. A. Howarter, J. P. Youngblood. Optimization of silica silanization by 3-amino -propyltriethoxysilane, Langmuir, 2006, 22, 11142-11147
[106] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, G. G. Andersson. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces, Journal of Physical Chemistry C, 2012, 116, 6289-6297
[107] Y. Y. Sun, Z. Q. Zhang, C. P. Wong. Fundamental research on surface modification of nano-size silica for underfill applications. Electronic Components and Technology Conference, 2004, 1, 754-60
[108] W. Bauhofer, S. Schulz, A. Eken, T. Skipa, D. Lellinger, I. Alig, E. Tozzi, D. Klingenberg. Shear-controlled electrical conductivity of carbon nanotubes networks suspended in low and high molecular weight liquids, Polymer, 2010, 51, 5024-5027
[109] R. K. Iler. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York, 1979, 588-592
[110] J. Kathi, K. Y. Rhee, J. H. Lee. Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites, Composites Part A, 2009, 40, 800-809
[111] S. Kumar, M. A. Alam, J. Y. Murthy. Effect of percolation on thermal conductivity transport in nanotube composites, Applied Physics Letters, 2007, 90, 104105-104107
[112] A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, K. E. Goodson. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density, ACS Nano, 2011, 5, 4818-4825
[113] B. L. Wardle, D. S. Saito, E. J. García, A. J. Hart, R. G. de Villoria, E. A. Verploegen. Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube-polymer composites, Advanced Materials, 2008, 20, 2707-2714
[114] S. Ju, Z. Y. Li. Theory of thermal conductance in carbon nanotube composites, Physics Letters A, 2006, 353, 194-197
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw