進階搜尋


下載電子全文  
系統識別號 U0026-1501201510411700
論文名稱(中文) 電離層與太空電漿實驗腔內之離子診測研究
論文名稱(英文) Ion Measurements of Ionosphere Plasma in Space Plasma Operation Chamber
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 103
學期 1
出版年 104
研究生(中文) 方惠寬
研究生(英文) Hui-Kuan Fang
學號 L28001038
學位類別 博士
語文別 英文
論文頁數 138頁
口試委員 指導教授-陳秋榮
共同指導教授-小山孝一郎
口試委員-蔡錦俊
口試委員-柳克強
口試委員-吳宗信
口試委員-西田靖
中文關鍵字 電離層  阻滯電位分析儀  蘭摩爾探針  太空電漿實驗腔 
英文關鍵字 Ionosphere  Retarding Potential Analyzer  Langmuir Probe  Space Plasma Operation Chamber 
學科別分類
中文摘要 安裝於衛星與探空火箭上之阻滯電位分析儀為全世界太空任務中,執行電離層離子現地量測的主要科學酬載,由於此儀器與蘭摩爾探針均屬於靜電場式粒子偵測器,因此,與蘭摩爾探針相同,儀器的電極污染為量測誤差的主要原因之一。電極上的污染層在儀器量測的過程中形成額外的電阻與電容,此電阻與電容會造成兩種效應:阻抗變化與電荷累積效應,這兩種效應會改變儀器之電壓—電流量測曲線並造成誤差。在蘭摩爾探針的量測上,我們可藉由改變電壓掃描頻率以降低阻抗變化效應,然而,由於儀器結構的緣故,阻滯電位分析儀電極污染造成的電荷累積效應遠大於阻抗變化效應,此電荷累積效應會直接造成量測離子流速與離子溫度的改變,當阻滯電位分析儀應用於探空火箭上時,由於火箭飛行速度較衛星低(約每秒1至2公里),且在火箭量測高度(100至300km)範圍內之離子溫度可低達200至300K,此時電極污染效應會對離子溫度與流速量測造成顯著的影響。在本篇論文中我以理論模擬與太空電漿實驗腔(SPOC)實驗的方式,討論阻滯電位分析儀的電極污染效應,並提出解決的方法與可應用於探空火箭之無電極污染阻滯電位分析儀系統。

太空電漿實驗腔(SPOC)為一可模擬地球電離層環境之真空實驗腔,腔體長3公尺、直徑2公尺,腔體內安裝了兩組逆擴散式電漿源以產生電離層電漿,本篇論文將介紹SPOC的設計細節、功能與使用無電極污染阻滯電位分析儀及蘭摩爾探針量測的實驗結果,包含離子與電子之能量分佈函數與空間分佈。當背景中性氣體密度約為1012 cm-3時,SPOC可產生的電漿密度範圍為103 至106 cm-3,電子的能量分佈函數為馬克士威分佈,溫度為1000至3000K,SPOC產生離子的能量分佈函數,由溫度接近中性氣體溫度(室溫)的馬克士威函數與高能離子流組成。SPOC未來可廣泛應用於太空電漿實驗、衛星與火箭之科學酬載校正與飛行系統環境測試。
英文摘要 In situ ion measurements in the ionosphere are mostly done with retarding potential analyzers (RPA) onboard satellites and sounding rockets. However, like most of the electrostatic analyzers such as Langmuir probes, the electrode contamination can be a serious problem for the RPA measurement. The contamination layer acts as extra capacitance and resistance and leads to distortion in the measured I-V curve, which leads to erroneous measurement results. There are two main effects of the contamination layer: one is the impedance effect and the other is the charge attachment and accumulation due to the capacitance of the contamination layer. The impedance effect can be reduced or eliminated by choosing the proper sweeping frequency. However, for RPA the charge accumulation effect becomes serious because the capacitance of the contamination layer is much larger than that of the Langmuir probe of similar dimension. This effect causes the measured ion drift velocity (ion temperature) to be higher (lower) than the actual values. The error caused by the RPA electrode contamination is expected to be significant for sounding rocket measurements with low rocket velocity (1~ 2 km/s) and low ion temperature of 200-300K in the height range of 100-300 km. In this thesis I discussed the effects associated with the RPA contaminated electrodes based on theoretical analysis and experiments performed in the space plasma operation chamber (SPOC). The development of a contamination-free RPA for sounding rocket missions is presented.

SPOC is a research plasma device designed to produce plasmas similar to those in the ionosphere. It is a cylindrical chamber of 2 meters in diameter and 3 meters in length. The SPOC plasma is produced by two back-diffusion type plasma sources. In this thesis the SPOC machine details and its capabilities on plasma experiments and space environmental tests are described. The spatial and energy distributions of ions and electrons in SPOC measured by contamination-free RPA and Langmuir probe systems are presented. The plasma density in SPOC and be varied from 103 to 106 cm-3, and the neutral density is ~1012 cm-3. Electrons have Maxwellian distribution with temperature of 1000-3000K. The ion distribution has two components: one is a drift-Maxwellian component with temperature close to the neutral particle temperature (room temperature), and another is a small ion beam component. SPOC can be used for studying space plasma processes and for the calibration and test of satellite/rocket-borne instruments.
論文目次 摘要 I
Abstract II
誌謝(Acknowledgement) IV
目錄 VI
表目錄 VII
圖目錄 VIII
Chapter 1 Introduction 1
Chapter 2 Retarding Potential Analyzer Theory of Operation 11
2.1 Current-Voltage Characteristics of Langmuir Probe 12
2.2 Current-Voltage Characteristics of Retarding Potential Analyzer 22
2.3 Measurement of Energy Distribution Functions 28
2.4 Possible Sources of Measurement Error 33
Chapter 3 Electrode Contamination Effects 36
3.1 Microscopic View of Electrode Contamination 37
3.2 Macroscopic View of Electrode Contamination 43
3.3 Laboratory Experimental Setup and Results 59
3.4 Means to Remove Contaminants 73
3.5 Contamination-free RPA Design for Rocket Missions 75
Chapter 4 Plasma Properties in the Space Plasma Operation Chamber (SPOC) 83
4.1 SPOC Device 83
4.2 Back-diffusion Type Plasma Source 90
4.3 Plasma Productions and Confinement in SPOC 95
4.4 Ion Characteristics of Back-Diffusion Plasma Source 101
4.5 Potential Distribution and Electrons in SPOC 112
Chapter 5 Summary and Conclusion 123
References 126
參考文獻 Abe, T., K. I. Oyama, H. Amemiya, S. Watanabe, T. Okuzawa, and K. Schlegel (1990), “Measurements of temperature and velocity distribution of thermal electrons by the Akebono (EXOS-D) satellite,” J. Geomag. Geoelectr. 42, No. 4, 537-554
Abe, T., J. Kurihara, N. Iwagami, S. Nozawa, Y. Ogawa, R. Fujii, H. Hayakawa, and K.-I. Oyama (2006), “Dynamics and Energetics of the Lower Thermosphere in Aurora (DELTA)-Japanese sounding rocket campaign,” Earth Planets Space 58(9), 1165-1171
Abe, T., and K. -I. Oyama (2013), “Langmuir probe,” An introduction to Space Instrumentation, edited by K. -I. Oyama and C. Z. Cheng (Terra, Pub. 2013), p. 63-75.
Allen, J. E. (1992), “Probe theory-the orbital motion approach,” Physica Scripta, 45(5), 497
Amatucci, W. E., P. W. Schuck, D. N. Walker, P. M. Kintner, S. Powell, B. Holback, and D. Leonhardt (2001), “Contamination-free sounding rocket Langmuir probe,” Review of Scientific Instruments, 72(4), 2052-2057
Appleton, E. V., and M. A. F. Barnett (1925), “Local Reflection of Wireless Waves from the Upper Atmosphere,” Nature 115 (2888)
Bankov, L., R. Heelis, M. Parrot, J.-J. Berthelier, P. Marinov, and A. Vassileva (2009), “WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data,” Ann. Geophys., 27, 2893-2902
Bauer, S. J., and A. F. Nagy (1975), “Ionospheric direct measurement techniques,” Proc. IEEE 63, 1
Bibl, K. (1998), “Evolution of the ionosonde,” ANNALI DI GEOFISICA, Vol. 41, N. 5-6, 667-680
Bilitza, D., D. Altadill, Y. Zhang, C. Mertens, V. Truhlik, P. Richards, L. A. McKinnell, and B. Reinisch (2014), “The International Reference Ionosphere 2012 - a model of international collaboration,” J. Space Weather Space Clim. 4, A07
Binnig, G., C. F. Quate, and C. Gerber (1986) “Atomic force microscope,” Physical review letters, 56(9), 930
Blanc, M., and A. Richmond (1980), “The ionospheric disturbance dynamo,” J. Geophys. Res., 85(A4), 1669-1686
Boyd, R. L. F., and N. D. Twiddy (1958), “Electron energy distributions in plasmas. I”, Proc. R. Soc., A250, 53-69
Brace, L. H., R. F. Theis, and A. Dalgarno (1973), “The cylindrical electrostatic probes for Atmosphere Explorer‐C,‐D, and‐E,” Radio Science 8, 341-348
Breit, G., and M. A. Tuve (1926), “A Test of the Existence of the Conducting Layer,” Phys. Rev, vol. 28, p. 554
Buchholtz, B. W. and P. J. Wilbur (1993), “An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor - Annual Report, 1 Jan. 1992 - 1 Jan. 1993,” NASA CR-I91172
Carruth, M. R. (1991), “Arcing Action Item Responses,” Minutes of the Space Station Electrical Grounding Tiger Team Mtg., Rocketdyne,Cleveland,OH,Sept.12-13
Carruth, M. R., Jr., J. A. Vaughn, R. T. Bechtel, and P. A. Gray (1993), “Experimental Studies on Spacecraft Arcing,” Journal of Spacecraft and Rockets, vol. 30, no. 3, May-June, pp. 323-327
Chao, C. K., and S.-Y. Su (1999), “On accuracy of RPA measurements of ion fluxes,” Adv. Space Res., 23, 8, 1537-1540
Chao, C. K., and S.-Y. Su (2000), “Charged particle motion inside the retarding potential analyzer,” Phys. Plasmas, 7, 101
Chao, C. K., S. Y. Su, and H. C. Yeh (2003), “Grid effects on the derived ion temperature and ram velocity from the simulated results of the retarding potential analyzer data,” Advances in Space Research, 32(11), 2361-2366
Chao, C. K., Y. H. Chu, C. L. Su, and S. Minami (2012), “In-situ measurement of ionospheric E-region plasma irregularities over Taiwan,” Terrestrial, Atmospheric & Oceanic Sciences, 23(3)
Chen, F. F. (1984), Introduction to Plasma Physics and Controlled Fusion, 2nd Ed., Plenum Press
Chen, H. M. (2010), Langmuir Probe System for Sounding Rocket Experiment, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
Chen, P.-R. (1992), Two-day oscillation of the equatorial ionization anomaly, J. Geophys. Res., 97(A5), 6343-6357
Chen, W. H. (2014), Measurement of Electron Distribution Function in Space Plasma Operation Chamber, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
Cheng, C. Z. F., Y. H. Kuo, R. A. Anthes, and L. Wu (2006), “Satellite constellation monitors global and space weather,” Eos, Transactions American Geophysical Union, 87(17), 166-166.
Cooke, D. L., C. W. Turnbull, C. Roth, A. Morgan, and R. Redus (2003), “Ion drift-meter status and calibration,” First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies (pp. 212-219). Springer Berlin Heidelberg
Cowley, B., and S. Dietrich (2009), “A Langmuir probe system incorporating the Boyd-Twiddy method for EEDF measurement applied to an inductively coupled plasma source”, Plasma Sources Sci. Technol. 18, 014010
Donley, J. L. (1963), “Experimental evidence for a low ion-transition altitude in the upper nighttime ionosphere,” J. Geopys. Res., 68, 2058-2060
Dryvesteyn, M. J. (1930), “Der Niedervolt Bogen”, Z. Physik, 64, 781-798
Fang, H. K. (2011), Development of an Ion Energy Analyzer For Ionosphere Studies, M.S. thesis, Physics Department, National Cheng Kung University
Fang, H. K., K. I. Oyama, and C. Z. Cheng (2014), “Electrode contamination effects of retarding potential analyzer,” Review of Scientific Instruments, 85(1), 015104.
Fejer, B. G., and M. C. Kelley (1980), “Ionosphere irregularities,” Rev. Geophys. Space Phys., 18, 401-454
Felder, M. C., B.L. Sater, P. E. Paulsen, D. Thompson, and R. Olsafsky (1993), “Results of Testing conducted in Tank 5 for Interactions Between Space Station Freedom and Plasma,” PIR#268, NASA LeRC, Jan. 22,1993.
Ferguson, D.C. (1986), “The Voltage Threshold for Arcing for Solar Cells in LEO - Flight and Ground Test Results,” NASA TM-87259.
Ferguson, D. C. (1996), “The role of space plasma simulation chambers in spacecraft design and testing,” Energy Conversion Engineering Conference, 1996, Proceedings of the 31st Intersociety (Vol. 4, pp. 2188-2192)
Gauss, C. F. (1839), “Allgemeine Theorie des Erdmagnetismus,” Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838, 1-52
Gekelman, W., H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs (1991), “Design, construction, and properties of the large plasma research device- The LAPD at UCLA,” Review of scientific instruments, 62(12), 2875-2883
Gill, E., P. Sundaramoorthy, J. Bouwmeester, B. Zandbergen, and R. Reinhard (2013), “Formation flying within a constellation of nano-satellites: The QB50 mission,” Acta Astronautica, 82(1), 110-117
Godyak, V. A., R. B. Piejak and B. M. Alexandrovich (1992), “Measurement of electron energy distribution in low-pressure RF discharges,” Plasma Sources Sci. Technol. 1, 36
Goncharenko, L. P., A. J. Coster, J. L. Chau, and C. E. Valladares (2010), “Impact of sudden stratospheric warmings on equatorial ionization anomaly,” J. Geophys. Res., 115, A00G07
Gordon, W. E. (1958), “Incoherent scattering of radio waves by free electrons with application to space exploration by radar,” Proc. TRE 46, 1824
Grier, N.T. (1980), “Experimental Results on Plasma Interactions with Large Surfaces at High Voltages,” NASA TM- 81423.
Hagen, J. B., and R. A. Behnke (1976), “Detection of the electron component of the spectrum in incoherent scatter of radio waves by the ionosphere,” J. Geophys. Res. 81, 3441
Hanson, W. B., and D. D. Mckibbin (1961), “An ion-trap measurement of the ion concentration profile above the F2 peak,” J. Geopys. Res., 66, 1667-1671
Hanson, W. B., S. Sanatani, D. Zuccaro, and T. W. Flowerday (1970), “Plasma measurements with the retarding potential analyzer on Ogo 6,” J. Geophys. Res., 75(28), 5483-5501
Hanson, W. B., D. R. Zuccaro, C. R. Lippincott, and S. Sanatani (1973), “The retarding-potential analyzer on Atmosphere Explorer,” Radio Science, 8, 4, 333-339
Hanson, W. B., W. R. Coley, and R. A. Heelis (1993), “A Comparison of in situ measurements of E and VxB from Dynamics Explorer 2,” J. Geophys. Res., 98, 21501-21516
Hastings, D. E. (1995), “A review of plasma interactions with spacecraft in low Earth orbit,” Journal of Geophysical Research: Space Physics (1978-2012), 100(A8), 14457-14483.
Heaviside, O. (1902), “Theory of Electric Telegraphy,” Encyclopedia Britannica, 10th Edition, Vol. 33, London, 215
Heelis, R. A., W. B. Hanson, C. R. Lippincott, D. R. Zuccaro, L. H. Harmon, B. J. Holt, J. E. Doherty, and R. A. Power (1981), “The ion drift meter for Dynamics Explorer-B,” Space Science Instrumentation, 5, 511-521
Heelis, R. A., and W. B. Hanson (1998), “Measurements of thermal ion drift velocity and temperature using planar sensors,” Measurement techniques in space plasmas: particles, 61-71
Heidt, H., J. Puig-Suari, A. Moore, S. Nakasuka, and R. Twiggs, (2000), “CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual AIAA/USU Conference on Small Satellites
Hinteregger, H. E., K. R. Damon, and L. A. Hall (1959), “Analysis of photoelectrons from solar extreme ultraviolet,” J. Geophys. Res. 64, 961-969
Holback, B., Å. Jacksén, L. Åhlén, S. -E. Jansson, A. I. Eriksson, J. -E. Wahlund, T. Carozzi, and J. Bergman (2001), “LINDA - the Astrid-2 Langmuir probe instrument,” Ann. Geophys. 19, 601-610
Hsieh, T. Y. (2011), Development of Impedance Probe System for Electron Density Measurement in Ionosphere, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
Hsu, Y. W. (2014), Development of TeNeP Instrument for Nanosatellites, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
Huang, C. T. (2011), Development of Electron Temperature Probe, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
Hutchinson, I. H. (1987), Principles of Plasma Diagnostics, Cambridge University Press
Inouye, G.T. (1977), “Spacecraft Charging Anomalies on the DSCS I, Launch 2 Satellites,” NASA TM X-73537, pp. 829-852.
Itikawa, Y., m. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, and K. Takayanagi (1986), “Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules,” J. Phys. Chem. Ref. Data, 15, 3
Itikawa, Y. (2006), “Cross Sections for Electron Collisions with Nitrogen Molecules”, J. Phys. Chem. Ref. Data, 35, 1
Itikawa, Y. (2009), “Cross Sections for Electron Collisions with Oxygen Molecules”, J. Phys. Chem. Ref. Data, 38, 1
Jiang, G. S. (2014), Satellite Simulation Experiment for Electron Temperature and Density Probe (TeNeP), M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
Kawai, Y., and H. Ikegami (1970), “Control of ion-energy distribution in a back-diffusion type plasma,” Physics Letters A, 32(5), 318-319
Kelley, M. C. (2009), The Earth's Ionosphere: Plasma Physics & Electrodynamics, 2nd Ed. Academic Press
Kennelly, A. E. (1902), “On the Elevation of the Electrically-Conducting Strata of the Earth's Atmosphere,” Electrical World and Engineer, Vol. 39, p. 473
Klenzing, J. H., G. D. Earle, and R. A. Heelis (2008), “Errors in ram velocity and temperature measurements inferred from satellite-borne retarding potential analyzers”, Physics of Plasmas, 15, 062905
Klenzing, J. H., G. D. Earle, R. A. Heelis, W. R. Coley (2009), “A statistical analysis of systematic errors in temperature and ram velocity estimates from satellite-borne retarding potential analyzers”, Physics of Plasmas, 16, 052901
Knudsen, W. C. (1966), “Evaluation and demonstration of the use of retarding potential analyzers for measuring several ionospheric quantities,” J. Geophys. Res., 71, 19, 4669-4678
Krehbiel, J. P., L. H. Brace, R. F. Theis, J. R. Cutler, W. H. Pinkus, and R. B. Kaplan (1980), “Pioneer Venus Orbiter Electron Temperature Probe,” IEEE Trans. Geosci. Remote Sens. GE-18, No. 1, 49-54
Krehbiel, J. P., L. H. Brace, R. F. Theis, W. H. Pinkus, and R. B. Kaplan (1981), “The Dynamics Explorer Langmuir probe instrument,” Space Science Instrumentation 5, 493-502
Langmuir, I., and H. Mott-Smith, Jr. (1924), “Studies of electric discharges in gas at low pressures,” Gen. Elec. Rev. 616, Sept
Lebreton, J. -P., S. Stverak, P. Travnicek, M. Maksimovic, D. Klinge, S. Merikallio, D. Lagoutte, B. Poirier, P.-L. Blelly, Z. Kozacek, and M. Salaquarda (2006), “The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results,” Planetary and Space Science 54, 5
Lee, C. H. (2012), Development of Langmuir Probe for measuring electron energy distribution function, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
Leung, P. (1985), “Characterization of EMI Generated by the Discharge of a ‘VOLT’ Solar Array,” Final Report JPL D-2644
Lin, C. H., J. Y. Liu, T. W. Fang, P. Y. Chang, H. F. Tsai, C. H. Chen, and C. C. Hsiao (2007), “Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC,” Geophys. Res. Lett., 34, L19101
Marconi, E. M. (2004), “What is a sounding rocket?” http://www.nasa.gov/missions/research/f_sounding.html
Marconi, G. (1909), “Wireless Telegraphic Communication: Nobel Lecture, 11 December 1909.” Nobel Lectures. Physics 1901-1921. Amsterdam: Elsevier Publishing Company, 1967: 196-222. p. 206
Meyer, G., and N. M. Amer (1990), “Simultaneous measurement of lateral and normal forces with an optical‐beam‐deflection atomic force microscope,” Applied physics letters, 57(20), 2089-2091
Minami, S., and Y. Takeya (1982), “Ion temperature determination in the ionosphere by retarding potential analyzer aboard sounding rocket,” J. Geopys. Res., 87, 713-730
Morikawa, K., Y. Kazoe, K. Mawatari, T. Tsukahara, and T. Kitamori (2012), “Development of dielectric constant measurement method for unique reaction in extended-nano space,” 14th international conference on miniaturized systems for chemistry and life sciences, Oct. 28 - Nov. 1, 2012, Okinawa, Japan
Mott-Smith, H., Jr., and I. Langmuir (1926), “The Theory of Collectors in Gaseous Discharges,” Phys. Rev. 28, 727-763
Nugent, R., R. Munakata, A. Chin, R. Coelho, and J. Puig-Suari, (2008), “The cubesat: The picosatellite standard for research and education,” Aerospace Engineering, 805, 756-5087
Oyama, K. -I., and H. Kunio (1975), “Erroneous evaluation of electron and ion temperatures from a contaminated retarding potential trap,” Planet. Space Sci. 23, 1309-1312
Oyama, K.-I. (1975), Characterestic of the contaminated Langmuir probe and countermoves for its application to the space observations, Ph.D. thesis, ISAS Report No. 525.
Oyama, K. -I. (1976), “A systematic investigation of several phenomena associated with contaminated Langmuir probes,” Planetary and Space Science, 24(2), 183-190
Oyama, K. -I., and K. Hirao (1976), “Inaccuracies in electron density estimates due to surface contamination of Langmuir probes”, Planet Space Sci., 24, 87-89
Oyama, K., and K. Hirao (1976), “Application of a glass-sealed Langmuir probe to ionosphere study,” Rev. Sci. Instrum., 47(1), 101-107
Oyama, K.-I., C. H. Lee, H. K. Fang, and C. Z. Cheng (2012), “Means to remove electrode contamination effect of Langmuir probe measurement in space,” Rev. Sci. Instrum. 83, 055113
Parrot, M. (2002), “The micro-satellite DEMETER,” J. Geodynamics, 33, 535-541
Pigache, D. R. (1973), “A laboratory simulation of the ionospheric plasma,” AIAA Journal, 11(2), 129-130
Popov, T. K., M. Dimitrova, F. M. Dias, V. N. Tsaneva, N. A. Stelmashenko, M. G. Blamire, and Z. H. Barber (2006), “Second derivative Langmuir probe diagnostics of gas discharge plasma at intermediate pressures (review article),” Journal of Physics: Conference Series (Vol. 44, No. 1, p. 60)
Purvis, C. K., H. B. Garret, A. C. Whittlesey, and N. J. Stevens (1984), “Design Guidelines for Assessing and Controlling Spacecraft Charging Effects,” NASA TP-2361
Reifman, A. and W. G. Dow (1949), “Dynamic probe measurements in the ionosphere,” Phys. Rev. 76, 987-988
Sagalyn, R., M. Smiddy, and J. Wisnia (1963), “Measurement and interpretation of ion density distributions in the daytime F region,” J. Geopys. Res., 68, 199-209
Sagalyn, R., and R. H. Wand (1971), “Daytime rocket and thomson scatter studies of the lower ionosphere,” J. Geopys. Res., 76, 3783-3794
Schlatter, T. W. (2009), “Atmospheric Composition and Vertical Structure,” National Oceanic and Atmospheric Administration (NOAA), Boulder, CO
Schott, L. (1968), Plasma Diagnostics, edited by W. Lochte-Holtgreven (North-Holland, Amsterdam, 1968), Chap. 11
Shimoyama. M, K.-I. Oyama, T. Abe, A. W. Yau (2012), “Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere”, J. Phys. D: Appl. Phys., 45, 075205
Sinha, H. S. S., and S. Prakash (1987), Ind. J. Radio Space Phys. 16, 102-113
Stevens, N. J. (1979),”Interactions Between Spacecraft and the Charged-Particle Environment,” NASA CP-2017, pp. 268-294
Stone, N. H., and W. K. Rehmann (1970). “The simulation of ionospheric conditions for space vehicles,” NASA TN D-5894
Szuszczewicz, E. P., and J. C. Holmes (1975), “Surface contamination of active electrodes in plasmas: Distortion of conventional Langmuir probe measurements,” Journal of Applied Physics, 46(12), 5134-5139
Takayama, K., H. Ikegami, and S. Aihara (1967), Proc. 8th Intern. Conf. Phenomena in Ionized Gases, 552
Thomson, J. J. (1897), “Cathode Rays,” Philosophical Magazine 44, 293-316
Thomson, J. J. (1899), “On the Masses of the Ions in Gases at Low Pressures,” Philosophical Magazine 48, 547-567
Toepfer, A. J. (1967), “Observations of a Resonance Probe Effect near the Ion Plasma Frequency,” Phys. Fluids 10, 1599
Toorian, A., K. Diaz, and S. Lee (2008), “The cubesat approach to space access,” Aerospace Conference, 2008 IEEE (pp. 1-14)
Tsong, T. T., and E. W. Müller (1964), “Measurement of the energy distribution in field ionization,” The Journal of Chemical Physics, 41(11), 3279-3284
Vayner, B. V., D. C. Ferguson, D. B. Snyder, and C. V. Doreswamy (1996), “Electromagnetic Radiation Generated by Arcing in Low Density Plasma,” NASA TM-107217
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-01-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-01-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw