系統識別號 U0026-1501201416004700
論文名稱(中文) 自體骨髓單核球細胞結合玻尿酸水膠於心血管疾病的前臨床研究
論文名稱(英文) Preclinical studies of cardiovascular repair using autologous bone marrow mononuclear cells and hyaluronan hydrogel
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 102
學期 1
出版年 103
研究生(中文) 陳建熹
研究生(英文) Chien-Hsi Chen
學號 S98981018
學位類別 博士
語文別 英文
論文頁數 99頁
口試委員 指導教授-謝清河
中文關鍵字 細胞治療  心肌梗塞  玻尿酸水膠 
英文關鍵字 cell therapy  myocardial infarction  hyaluronan hydrogel 
中文摘要 摘要
英文摘要 Abstract
Coronary artery disease (CAD) is the most common type of heart disease. CAD occurs when the coronary arteries narrow as a result of atherosclerosis. Atherosclerosis decreases the blood flow that supplies the heart muscle and can lead to myocardial ischemia or even infarction (MI). Unfortunately, the current standard treatments are not sufficient to repair the injured heart in these cases and heart failure is the eventual outcome. Previous studies have shown that cell therapy is a promising approach for heart repair. Some clinical trials have also demonstrated that autologous cell therapy such as bone marrow mononuclear cells (BMMNCs) can improve cardiac function after MI. However, the results of these clinical studies remain controversial. The major reason for the controversy is that only a small portion of cells survive and are retained in the ischemic region after cell transplantation. A biocompatible hyaluronan (HA) hydrogel which has been proved to increase angiogenesis, enhance scarless wound healing, and also play an important role during heart vasculature development has been considered as a carrier to deliver BMMNCs into the infarcted heart. In our first study, we hypothesized that injection of HA hydrogel combined with BMMNCs may improve cardiac performance post-MI in a small animal MI model. To translate the combined treatment approach into clinical applications, our second study used a large animal model (mini pigs) to test the therapeutic benefits post-MI. We showed that the combined treatment improves cardiac performance by reducing scar size and collagen accumulation in the remote area, and by recruiting endogenous cells to the injury site for new blood vessel formation. Therefore, we postulate that HA/MNC therapy can be translated into a clinical treatment for MI.
論文目次 Index of Contents
Abstract I
摘要 III
誌謝 IV
Abbreviations V
Index of Figures VIII
Index of table X
Chapter 1 Introduction 1
1.1 Cardiovascular disease remains leading cause of death worldwide 1
1.2.2 Pharmacological approaches for cardioprotection 3
1.2.3 Cell therapy is a promising approach for ischemia heart disease 4
1.2.4 Tissue engineering to improve the therapeutic efficacy of cell therapy 5
Chapter 2 Hyaluronan Enhances Bone Marrow Cell Therapy for Myocardial Repair After Infarction 8
2.1 Background 8
2.2 Materials and Methods 10
2.2.1 Preparation of the coated plates 10
2.2.2 Experimental animals 11
2.2.3 Bone marrow MNC isolation, purification, and receptor analysis 11
2.2.4 Bone marrow MNC apoptosis analysis 12
2.2.5 Bone marrow MNC adhesion, proliferation, differentiation and gene Expression 12
2.2.6 MI model and treatment 15
2.2.7 Echocardiograph 15
2.2.8 DiI labeling of MNCs 16
2.2.9 Immunofluorescence and Masson’s trichrome staining 16
2.2.10 Statistical analysis 17
2.3 Results 18
2.3.1 HA promotes bone marrow MNC adhesion and proliferation 18
2.3.2 HA modulates bone marrow MNC differentiation, upregulates paracrine factor gene expression and reduces MNC apoptosis 21
2.3.3 HA/MNC injection reduces cardiomyocyte apoptosis in vivo 27
2.3.4 HA/MNC treatment reduces the inflammatory response after MI 27
2.3.5 The combined HA/MNC injection improves heart function after MI 30
2.3.6 HA/MNC injection reduces scar formation and does not induce chondrogenesis 30
2.3.7 HA/MNC injection promotes angiogenesis and arteriogenesis after infarction 37
2.4 Discussion 44
2.5 Summaries and Future Direction 49
Chapter 3 Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs 50
3.1 Background 50
3.2 Materials and Methods 52
3.2.1 Experimental Animals 52
3.2.2 Induction of Myocardial Infarction, and HA and MNC Administration 52
3.2.3 Bone Marrow MNC Isolation, Purification, and DiI Fluorescent Dye Labeling 54
3.2.4 Echocardiography 54
3.2.5 Hemodynamics 54
3.2.6 Infarct Size, Length, and Area 55
3.2.7 Collagen Deposition and Wheat Germ Agglutinin Staining 55
3.2.8 Immunohistochemistry 56
3.2.9 Statistical Analysis 56
3.3 Results 58
3.3.1 Combined HA/MNC Injection Elevates Cardiac Function, Thickens the Interventricular Septum, and Prevents Ventricular Remodeling After MI 58
3.3.2 Combined HA/MNC Injection Improves Hemodynamics after MI 61
3.3.3 Combined HA/MNC Injection Reduces Collagen Accumulation and Pathological Hypertrophy in Areas Remote from the Infarct 64
3.3.4 Combined HA/MNC Injection Increases Implanted Cell Retention and Neovascularization 68
3.4 Discussion 72
3.5 Summaries and Future Direction 75
Chapter 4 Conclusion 76
References 77
Curriculum Vitae 98
參考文獻 References
1. Mackay J, Mensah GA. The atlas of heart disease and stroke. World Health Organization & Center for Disease Control and Prevention.
2. Laflamme MA, and Murry CE. Regenerating the heart. Nature biotechnology. 2005;23(7):845-56.
3. Brown RD, Ambler SK, Mitchell MD, and Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annual review of pharmacology and toxicology. 2005;45(657-87.
4. Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 2013;498(7455):497-501.
5. Oberpriller JO, and Oberpriller JC. Response of the adult newt ventricle to injury. The Journal of experimental zoology. 1974;187(2):249-53.
6. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, and Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078-80.
7. Widimsky P, Budesinsky T, Vorac D, Groch L, Zelizko M, Aschermann M, Branny M, St'asek J, and Formanek P. Long distance transport for primary angioplasty vs immediate thrombolysis in acute myocardial infarction. Final results of the randomized national multicentre trial--PRAGUE-2. European heart journal. 2003;24(1):94-104.
8. Fletcher AP, Alkjaersig N, and Sherry S. The maintenance of a sustained thrombolytic state in man. I. Induction and effects. The Journal of clinical investigation. 1959;38(7):1096-110.
9. Koren G, Weiss AT, Hasin Y, Appelbaum D, Welber S, Rozenman Y, Lotan C, Mosseri M, Sapoznikov D, Luria MH, et al. Prevention of myocardial damage in acute myocardial ischemia by early treatment with intravenous streptokinase. The New England journal of medicine. 1985;313(22):1384-9.
10. Lew AS, Laramee P, Cercek B, Rodriguez L, Shah PK, and Ganz W. The effects of the rate of intravenous infusion of streptokinase and the duration of symptoms on the time interval to reperfusion in patients with acute myocardial infarction. Circulation. 1985;72(5):1053-8.
11. Simoons ML, Serruys PW, vd Brand M, Bar F, de Zwaan C, Res J, Verheugt FW, Krauss XH, Remme WJ, Vermeer F, et al. Improved survival after early thrombolysis in acute myocardial infarction. A randomised trial by the Interuniversity Cardiology Institute in The Netherlands. Lancet. 1985;2(8455):578-82.
12. Hillis LD, Borer J, Braunwald E, Chesebro JH, Cohen LS, Dalen J, Dodge HT, Francis CK, Knatterud G, Ludbrook P, et al. High dose intravenous streptokinase for acute myocardial infarction: preliminary results of a multicenter trial. Journal of the American College of Cardiology. 1985;6(5):957-62.
13. Cannon CP, Bahit MC, Haugland JM, Henry TD, Schweiger MJ, McKendall GR, Shah PK, Murphy S, Gibson CM, McCabe CH, et al. Underutilization of evidence-based medications in acute ST elevation myocardial infarction: results of the Thrombolysis in Myocardial Infarction (TIMI) 9 Registry. Critical pathways in cardiology. 2002;1(1):44-52.
14. Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet. 1978;1(8058):263.
15. Farb A, Burke AP, Kolodgie FD, and Virmani R. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation. 2003;108(14):1701-6.
16. Simoons ML, Serruys PW, van den Brand M, Res J, Verheugt FW, Krauss XH, Remme WJ, Bar F, de Zwaan C, van der Laarse A, et al. Early thrombolysis in acute myocardial infarction: limitation of infarct size and improved survival. Journal of the American College of Cardiology. 1986;7(4):717-28.
17. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. The New England journal of medicine. 1985;312(3):159-63.
18. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, and Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. The Journal of clinical investigation. 1994;94(4):1621-8.
19. Kloner RA, Ganote CE, and Jennings RB. The "no-reflow" phenomenon after temporary coronary occlusion in the dog. The Journal of clinical investigation. 1974;54(6):1496-508.
20. Prasad A, Stone GW, Holmes DR, and Gersh B. Reperfusion injury, microvascular dysfunction, and cardioprotection: the "dark side" of reperfusion. Circulation. 2009;120(21):2105-12.
21. Gerczuk PZ, and Kloner RA. An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. Journal of the American College of Cardiology. 2012;59(11):969-78.
22. Toombs CF, McGee S, Johnston WE, and Vinten-Johansen J. Myocardial protective effects of adenosine. Infarct size reduction with pretreatment and continued receptor stimulation during ischemia. Circulation. 1992;86(3):986-94.
23. Ely SW, and Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation. 1992;85(3):893-904.
24. Groenning BA, Nilsson JC, Sondergaard L, Fritz-Hansen T, Larsson HB, and Hildebrandt PR. Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. Journal of the American College of Cardiology. 2000;36(7):2072-80.
25. Halestrap AP, Clarke SJ, and Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovascular research. 2004;61(3):372-85.
26. Kloner RA. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circulation research. 2013;113(4):451-63.
27. Gajarsa JJ, and Kloner RA. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart failure reviews. 2011;16(1):13-21.
28. Cohn JN, Ferrari R, and Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. Journal of the American College of Cardiology. 2000;35(3):569-82.
29. Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, Behringer RR, Schwartz RJ, Entman ML, and Schneider MD. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Annals of the New York Academy of Sciences. 2004;1015(182-9.
30. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127(6):1151-65.
31. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120(12):1075-83, 7 p following 83.
32. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763-76.
33. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433(7026):647-53.
34. Segers VF, and Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937-42.
35. Mazo M, Gavira JJ, Pelacho B, and Prosper F. Adipose-derived stem cells for myocardial infarction. Journal of cardiovascular translational research. 2011;4(2):145-53.
36. Metzele R, Alt C, Bai X, Yan Y, Zhang Z, Pan Z, Coleman M, Vykoukal J, Song YH, and Alt E. Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes. FASEB journal. 2011;25(3):830-9.
37. Vacanti JP, and Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354 Suppl 1(SI32-4.
38. Langer R, and Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487-92.
39. Chen RR, and Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharmaceutical research. 2003;20(8):1103-12.
40. Lee H, Cusick RA, Browne F, Ho Kim T, Ma PX, Utsunomiya H, Langer R, and Vacanti JP. Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation. 2002;73(10):1589-93.
41. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107(21):2733-40.
42. Bootle-Wilbraham CA, Tazzyman S, Thompson WD, Stirk CM, and Lewis CE. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro. Angiogenesis. 2001;4(4):269-75.
43. Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Marban E, and Abraham MR. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 2006;113(15):1832-41.
44. Segers VF, and Lee RT. Local delivery of proteins and the use of self-assembling peptides. Drug discovery today. 2007;12(13-14):561-8.
45. Small EM, and Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336-42.
46. Urbich C, Kuehbacher A, and Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular research. 2008;79(4):581-8.
47. Segers VF, and Lee RT. Biomaterials to enhance stem cell function in the heart. Circulation research. 2011;109(8):910-22.
48. Lutolf MP, Gilbert PM, and Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462(7272):433-41.
49. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, and Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(22):12741-6.
50. Kleinman HK, Philp D, and Hoffman MP. Role of the extracellular matrix in morphogenesis. Current opinion in biotechnology. 2003;14(5):526-32.
51. Gillette BM, Jensen JA, Tang B, Yang GJ, Bazargan-Lari A, Zhong M, and Sia SK. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nature materials. 2008;7(8):636-40.
52. Christman KL, Fok HH, Sievers RE, Fang Q, and Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue engineering. 2004;10(3-4):403-9.
53. Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, and Lee RT. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005;111(4):442-50.
54. Jin J, Jeong SI, Shin YM, Lim KS, Shin H, Lee YM, Koh HC, and Kim KS. Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. European journal of heart failure. 2009;11(2):147-53.
55. Giraud MN, Armbruster C, Carrel T, and Tevaearai HT. Current state of the art in myocardial tissue engineering. Tissue engineering. 2007;13(8):1825-36.
56. Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, Cohen S, and Leor J. Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation. 2008;117(11):1388-96.
57. Seif-Naraghi SB, Singelyn JM, Salvatore MA, Osborn KG, Wang JJ, Sampat U, Kwan OL, Strachan GM, Wong J, Schup-Magoffin PJ, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Science translational medicine. 2013;5(173):173ra25.
58. Yoon SJ, Fang YH, Lim CH, Kim BS, Son HS, Park Y, and Sun K. Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. Journal of biomedical materials research Part B, Applied biomaterials. 2009;91(1):163-71.
59. Fraser JR, Laurent TC, and Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. Journal of internal medicine. 1997;242(1):27-33.
60. Knudson CB, and Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB journal. 1993;7(13):1233-41.
61. Naor D, Sionov RV, and Ish-Shalom D. CD44: structure, function, and association with the malignant process. Advances in cancer research. 1997;71(241-319.
62. Turley EA, Noble PW, and Bourguignon LY. Signaling properties of hyaluronan receptors. The Journal of biological chemistry. 2002;277(7):4589-92.
63. Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, and Frangogiannis NG. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol. 2008;180(4):2625-33.
64. Day AJ, and de la Motte CA. Hyaluronan cross-linking: a protective mechanism in inflammation? Trends in immunology. 2005;26(12):637-43.
65. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. The New England journal of medicine. 2005;352(16):1685-95.
66. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, and Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106(15):1913-8.
67. Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K, Anderson RL, Sueoka SH, Lee KH, Finer JT, et al. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science. 2011;331(6023):1439-43.
68. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18-e209.
69. Rafii S, and Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature medicine. 2003;9(6):702-12.
70. Laflamme MA, and Murry CE. Heart regeneration. Nature. 2011;473(7347):326-35.
71. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nature reviews Cancer. 2004;4(7):528-39.
72. Jiang D, Liang J, and Noble PW. Hyaluronan in tissue injury and repair. Annual review of cell and developmental biology. 2007;23(435-61.
73. Taylor KR, and Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB journal. 2006;20(1):9-22.
74. West DC, Hampson IN, Arnold F, and Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science. 1985;228(4705):1324-6.
75. Anttila MA, Tammi RH, Tammi MI, Syrjanen KJ, Saarikoski SV, and Kosma VM. High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer research. 2000;60(1):150-5.
76. Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A, Jr., Kubalak S, Klewer SE, and McDonald JA. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. The Journal of clinical investigation. 2000;106(3):349-60.
77. Reya T, Morrison SJ, Clarke MF, and Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11.
78. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American journal of cardiology. 2004;94(1):92-5.
79. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature medicine. 2001;7(11):1194-201.
80. Chung C, and Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue engineering Part A. 2009;15(2):243-54.
81. Jain RK. Molecular regulation of vessel maturation. Nature medicine. 2003;9(6):685-93.
82. Miyake K, Medina KL, Hayashi S, Ono S, Hamaoka T, and Kincade PW. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. The Journal of experimental medicine. 1990;171(2):477-88.
83. Verfaillie CM, Benis A, Iida J, McGlave PB, and McCarthy JB. Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion receptor. Blood. 1994;84(6):1802-11.
84. McCourt PA, Ek B, Forsberg N, and Gustafson S. Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan. The Journal of biological chemistry. 1994;269(48):30081-4.
85. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature medicine. 2005;11(4):367-8.
86. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, and Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543-9.
87. Kanda S, Lerner EC, Tsuda S, Shono T, Kanetake H, and Smithgall TE. The nonreceptor protein-tyrosine kinase c-Fes is involved in fibroblast growth factor-2-induced chemotaxis of murine brain capillary endothelial cells. The Journal of biological chemistry. 2000;275(14):10105-11.
88. Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, and Lin PC. Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood. 2006;108(4):1260-6.
89. Hausenloy DJ, and Yellon DM. Cardioprotective growth factors. Cardiovascular research. 2009;83(2):179-94.
90. Hellstrom M, Kalen M, Lindahl P, Abramsson A, and Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126(14):3047-55.
91. Stellos K, Bigalke B, Langer H, Geisler T, Schad A, Kogel A, Pfaff F, Stakos D, Seizer P, Muller I, et al. Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. European heart journal. 2009;30(5):584-93.
92. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, and Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circulation research. 1994;75(3):426-33.
93. Misra S, Obeid LM, Hannun YA, Minamisawa S, Berger FG, Markwald RR, Toole BP, and Ghatak S. Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. The Journal of biological chemistry. 2008;283(21):14335-44.
94. Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix biology. 2002;21(1):25-9.
95. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature medicine. 2005;11(11):1173-9.
96. McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, and Noble PW. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. The Journal of clinical investigation. 1996;98(10):2403-13.
97. Stern R, Asari AA, and Sugahara KN. Hyaluronan fragments: an information-rich system. European journal of cell biology. 2006;85(8):699-715.
98. Schimizzi AL, Massie JB, Murphy M, Perry A, Kim CW, Garfin SR, and Akeson WH. High-molecular-weight hyaluronan inhibits macrophage proliferation and cytokine release in the early wound of a preclinical postlaminectomy rat model. The spine journal. 2006;6(5):550-6.
99. Austin JW, Kang CE, Baumann MD, DiDiodato L, Satkunendrarajah K, Wilson JR, Stanisz GJ, Shoichet MS, and Fehlings MG. The effects of intrathecal injection of a hyaluronan-based hydrogel on inflammation, scarring and neurobehavioural outcomes in a rat model of severe spinal cord injury associated with arachnoiditis. Biomaterials. 2012;33(18):4555-64.
100. Tang ZC, Liao WY, Tang AC, Tsai SJ, and Hsieh PC. The enhancement of endothelial cell therapy for angiogenesis in hindlimb ischemia using hyaluronan. Biomaterials. 2011;32(1):75-86.
101. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, and Lee RT. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature medicine. 2007;13(8):970-4.
102. Li RK, Mickle DA, Weisel RD, Mohabeer MK, Zhang J, Rao V, Li G, Merante F, and Jia ZQ. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation. 1997;96(9 Suppl):II-179-86; discussion 86-7.
103. Jiang D, Liang J, and Noble PW. Hyaluronan as an immune regulator in human diseases. Physiological reviews. 2011;91(1):221-64.
104. Sutton MG, and Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981-8.
105. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 1997;96(11):4065-82.
106. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367(9505):113-21.
107. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England journal of medicine. 2006;355(12):1210-21.
108. Assmus B, Rolf A, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Tillmanns H, Yu J, Corti R, Mathey DG, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circulation Heart failure. 2010;3(1):89-96.
109. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, and Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation research. 2004;94(5):678-85.
110. Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, and Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126(5):551-68.
111. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. The New England journal of medicine. 2006;355(12):1222-32.
112. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England journal of medicine. 2006;355(12):1199-209.
113. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, Forder JR, Anderson RD, Hatzopoulos AK, Penn MS, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. The journal of the American Medical Association. 2012;308(22):2380-9.
114. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Forder JR, Byrne BJ, Hatzopoulos AK, Penn MS, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. The journal of the American Medical Association. 2011;306(19):2110-9.
115. Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, Silva GV, Lai D, Thomas JD, Kronenberg MW, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. The journal of the American Medical Association. 2012;307(16):1717-26.
116. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, and Drexler H. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198-202.
117. Chen CH, Wang SS, Wei EI, Chu TY, and Hsieh PC. Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Molecular therapy. 2013;21(3):670-9.
118. Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovascular research. 1998;39(1):60-76.
119. Dondelinger RF, Ghysels MP, Brisbois D, Donkers E, Snaps FR, Saunders J, and Deviere J. Relevant radiological anatomy of the pig as a training model in interventional radiology. European radiology. 1998;8(7):1254-73.
120. McCall FC, Telukuntla KS, Karantalis V, Suncion VY, Heldman AW, Mushtaq M, Williams AR, and Hare JM. Myocardial infarction and intramyocardial injection models in swine. Nature protocols. 2012;7(8):1479-96.
121. Lin YD, Yeh ML, Yang YJ, Tsai DC, Chu TY, Shih YY, Chang MY, Liu YW, Tang AC, Chen TY, et al. Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation. 2010;122(11 Suppl):S132-41.
122. Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, Yeghiazarians Y, Lee RJ, Grossman W, and Springer ML. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. Journal of applied physiology. 2007;102(6):2104-11.
123. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701-5.
124. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH, et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. The Journal of clinical investigation. 2005;115(2):326-38.
125. Hsieh PC, Davis ME, Gannon J, MacGillivray C, and Lee RT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. The Journal of clinical investigation. 2006;116(1):237-48.
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-01起公開。

  • 如您有疑問,請聯絡圖書館