進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1501201413511300
論文名稱(中文) 植入用硫酸鈣及硫酸鈣 / 磷酸鈣複合材料結構及性質研究
論文名稱(英文) Investigation of structure and properties of implantable calcium sulfate and calcium sulfate/calcium phosphate composite materials
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 1
出版年 103
研究生(中文) 陳韋綸
研究生(英文) Wei-Luen Chen
學號 N58951118
學位類別 博士
語文別 中文
論文頁數 221頁
口試委員 指導教授-陳瑾惠
指導教授-朱建平
口試委員-李經維
召集委員-尹相姝
口試委員-陳敏慧
中文關鍵字 鈣基骨水泥  抗壓強度  硬化時間  細胞毒性  組織切片  微結構 
英文關鍵字 Calcium-based cement  compressive strength  setting time  cytotoxicity  histological  microstructure 
學科別分類
中文摘要 中文摘要
硫酸鈣骨水泥與鈣磷系骨水泥(CPC)由於具有優異的生物相容性及引骨性,因此外科手術上常用來當作填充修補材料。本論文的主要目的是在研究製程參數對實驗室自製的一系列鈣基骨水泥取代物的結構、性質之影響。第一部分是著重於實驗室自製以磷酸氫二銨為硬化劑的半水硫酸鈣(CSH)骨水泥之工作時間、硬化時間、機械性質、結構及細胞毒性的影響。第二部分則是探討自製四鈣磷酸鹽/無水磷酸氫鈣/半水硫酸鈣(TTCP/DCPA/CSH)骨水泥之工作時間、硬化時間、機械性質、結構及細胞毒性的變化。
XRD結果指出在硬化劑的作用下,半水硫酸鈣會快速的轉變成二水硫酸鈣。浸泡在人工體液一天後,二水硫酸鈣會變成主要的相。長時間(最高達30天)浸泡結果顯示人工體液的pH值在6-7之間。硬化後骨水泥的重量會逐漸變小,孔隙度則會隨著時間拉長而變大。浸泡一天後抗壓強度會達到最大值,三十天以後骨水泥的抗壓強度能然大於25 MPa. SEM結果顯示,表面可觀察到明顯的二水硫酸鈣的結晶。細胞毒性測試也指出此硫酸鈣骨水泥具有生物相容性的植入材。
不像市面上大部分以鈣為基底的骨水泥,本研究自製四鈣磷酸鹽/無水磷酸氫鈣/半水硫酸鈣(TTCP/DCPA/CSH)骨水泥在可以直接注射到含水溶液的環境後直接硬化並且不會崩解。細胞毒性測試顯示有超過90%的細胞存活率,組織切片結果更顯示出骨水泥植入物與新生骨間的良好鍵結,並且沒有纖維組織產生。植入十二周後就可以看到相當活耀的新生骨重建在股骨缺陷中。二十六周的切片顯示出新生骨與骨水泥逐漸融為一體,兩者之介面也變得越來越不明顯。影像分析也指出在相同的條件下,本骨水泥的吸收速率明顯優於以TTCP 或TTCP/DCPA為主要成分之骨水泥。
英文摘要 Abstract
Due to its superior biocompatibility and osteoconductivity, calcium sulfate cement and calcium phosphate cement (CPC) has been suggested for use as a bone void filling material in dental and orthopedic applications. Primary purposes of this research are to investigate on the structure and properties of a series of in-house developed calcium-based cement bone substitute materials. The first part of the study focuses on investigate the in-house developed calcium sulfate bone cement of the setting solution, diammonium hydrogen phosphate ((NH4)2HPO4), on properties, such as working/setting time, mechanical strength, structure and cytotoxicity, of a calcium sulfate hemihydrates cement(CSH). Emphasis of the second part of the study has been placed on the investigation of in-house developed calcium-based cement on structure and properties of one of a TTCP/ DCPA/calcium sulfate hemihydrate (CSH) cement, such as working/setting time, mechanical strength, structure and cytotoxicity
XRD patterns indicated a quick phase change (a hydration process) of CSH into calcium sulfate dihydrate (CSD) after the cement powder was mixed with the setting solution. After the hardened cement was immersed in Hanks’ solution for 1 d, CSD became the dominant phase. The long-term (up to 30 d) pH value of the Hanks’ solution wherein the cement was immersed remained in the range of 6-7. The hardened cement gradually lost its weight and increased its porosity level with immersion time. When immersed for 1 d, the average CS value of the cement reached its maximum value. After 30 d, the CS value of the cement still remained > 25 MPa. SEM showed that, after being immersed for 30 d, numerous large, faceted CSD crystals were observed throughout the sample. Cytotoxicity test indicated that the calcium sulfate cement is a biocompatible implant material.
In-vitro and in-vivo studies have been conducted on an in-house-developed tetracalcium phosphate (TTCP)/dicalcium phosphate anhydrous (DCPA)/calcium sulfate hemihydrate (CSH)-derived composite cement. Unlike most commercial calcium-based cement pastes, the investigated cement paste can be directly injected into water and harden without dispersion. The viability value of cells incubated with conditioned medium of cement extraction is >90% that of Al2O3 control. Histological examination reveals excellent bonding between host bone and cement without interposition of fibrous tissues. At 12 weeks-post implantation, significant remodeling activities are found and a new bone network is developed within the femoral defect. The 26-week samples show that the newly formed bone becomes more mature, while the interface between residual cement and the new bone appears less identifiable. Image analysis indicates that the resorption rate of the present cement is much higher than that of TTCP or TTCP/DCPA-derived cement under similar implantation conditions.
論文目次 總目錄
中文摘要 1
Abstract 3
致謝 5
總目錄 6
表目錄 11
圖目錄 13
第一章 總緒論 19
1-1 生醫材料的定義 19
1-2 生醫材料之歷史發展 19
1-3 生醫材料之分類 21
1-3-1 依材料種類分類 21
1-3-2 依活性分類 24
1-4 骨科植入材之性質要求 26
1-5 人體硬組織結構成分及性質簡介 28
1-6氫氧基磷灰石性質簡介 35
第二章 理論基礎與文獻回顧 ………..51
2-1 硫酸鈣的發展與簡介 51
2-1-1 硫酸鈣的發展 51
2-1-2 硫酸鈣的性質簡介 52
2-1-3添加劑(additives)對硫酸鈣水合反應的影響 53
2-1-4硫酸鈣骨水泥的優點及缺點……………………….…..54
2-2 鈣磷系骨水泥的發展與簡介 56
2-2-1 前言 56
2-2-2 磷酸鈣鹽類生醫陶瓷分類與發展 56
2-2-3 鈣磷系鹽類的溶解相圖 58
2-2-4 鈣磷系鹽類水解形成氫氧基磷灰石 60
2-2-5 鈣磷系骨水泥的優點及應用 63
2-2-6 理想的骨填充材 64
2-3 鈣磷系骨水泥的測試 65
2-3-1 體外測試 (in vitro test) 65
2-3-2 鈣磷系骨水泥浸泡人工體液之體外測試 65
2-3-3 影響體外測試機械性質之因素 66
2-3-4 生物相容性評估(Biocompatibility evaluation) 67
2-4 磷酸鈣鹽與硫酸鈣鹽形成之多相複合生醫材料 69
2-4-1 CaSO4・1/2H2O/ HA composite 69
2-4-2 CaSO4・1/2H2O/α-TCP composite 70
2-4-3 CaSO4・2H2O/α-TCP composite 72
2-4-4 TTCP / DCPA/CaSO4・1/2H2O composite 73
2-4-5 TTCP / DCPD/CaSO4・2H2O composite 73
2-5 研究動機及目的 74
第三章 材料與實驗方法 94
3-1硫酸鈣骨水泥之性質、結構相關研究與實驗方法 94
3-1-1硫酸鈣骨水泥材料製備 94
3-1-2 抗壓強度測試 94
3-1-3 工作及硬化時間的測量 94
3-1-4 X光繞射分析 95
3-1-5 掃描式電子顯微鏡分析 96
3-1-6 細胞毒性測試(Cytotoxicity Assay) 96
3-2雙相磷酸鈣與硫酸鈣TTCP/DCPA/CSH複合鈣基骨水泥性質研究之實驗方法 105
3-2-1 鈣基骨水泥材料製備 105
3-2-2 抗壓強度測試 106
3-2-3 工作及硬化時間的測量 107
3-2-4 硬化期間及浸泡人工體液之pH值分析 107
3-2-5 X光繞射分析 108
3-2-6 孔隙度及重量損失量測 109
3-2-7 掃描式電子顯微鏡分析 110
第四章 結果與討論 114
4-1 硫酸鈣骨水泥相關性質研究 114
4-1-1以磷酸/非磷酸系列溶液作為硬化劑對硫酸鈣骨水泥性質影響之結果與討論 114
4-1-1-1工作及硬化時間測量結果 114
4-1-1-2抗壓強度分析 115
4-1-1-3 SEM微結構觀察 116
4-1-1-4 XRD分析 117
4-1-6 細胞毒性測試結果 127
4-1-2 抗壓強度分析 109
4-1-3 XRD繞射分析 124
4-1-2特殊硬化A及特殊硬化劑濃度改變對硫酸鈣骨水泥性質之影響 124
4-1-2-1工作及硬化時間測量結果 124
4-1-2-2抗壓強度分析 125
4-1-2-3 SEM微結構觀察 126
4-1-2-4 XRD分析 127
4-1-3調整溶液酸鹼度對硫酸鈣骨水泥性質之影響 136
4-1-3-1工作及硬化時間測量結果 136
4-1-3-2抗壓強度分析 137
4-1-3-3 SEM微結構觀察 138
4-1-3-4 XRD分析 139
4-1-4硫酸鈣骨水泥初始反應情形 142
4-1-4-1反應初期slurry的pH值變化 142
4-1-4-2抗壓強度及SEM微結構分析 142
4-1-5硫酸鈣骨水泥短時間及長時間浸泡之結果 146
4-1-5-1抗壓強度分析 146
4-1-5-2 SEM微結構觀察 147
4-1-5-3 XRD分析 147
4-1-5-4硫酸鈣骨水泥浸泡不同時間之Hanks’ solution酸鹼值比較 148
4-2磷酸鈣與硫酸鈣複合骨水泥性質研究 153
4-2-1初期性質研究 153
4-2-1-1複合骨水泥崩解性測試 153
4-2-1-2複合材料工作時間和硬化時間的測量 155
4-2-1-3複合材浸泡SBF一天後抗壓強度分析 157
4-2-1-4磷酸鈣與硫酸鈣複合材骨水泥細胞毒性測試 159
4-2-2磷酸鈣與硫酸鈣複合材骨水泥初始反應分析 160
4-2-2-1複合骨水泥反應初期抗壓強度變化 160
4-2-2-2複合骨水泥反應初期pH值變化 160
4-2-2-3複合骨水泥初期XRD之分析 162
4-2-2-4複合骨水泥初期SEM之觀察 165
4-2-3磷酸鈣與硫酸鈣複合骨水泥添加不同濃度特殊硬化劑浸泡人工體液一天後及長時間的性質分析討論 167
4-2-3-1複合材浸泡SBF一天後抗壓強度分析 167
4-2-3-2複合材骨水泥長時間浸泡SBF的抗壓強度分析 169
4-2-3-3複合材長時間浸泡SBF的pH值變化 171
4-2-3-4複合材骨水泥浸泡SBF長時間的XRD分析 173
4-2-3-5複合材長時間浸泡SBF的SEM微結構觀察 176
4-2-3-6複合材長時間浸泡SBF的孔隙率、重量損失 178
4-2-4磷酸鈣與硫酸鈣複合骨水泥組織切片觀察 180
第五章 總結論 183
參考文獻 186
作者簡介及論文著作 199
附錄I:鈣基骨水泥取代物生物相容性測試 201
附錄II:鈣基骨水泥取代物崩解性測試及與商用類似產品之比較 216
附錄III:重要名詞中英對照表 220


表目錄
表1-1 有關生醫植入材料的一些重要發展簡表(PartⅠ)。 39
表1-2 有關生醫植入材料的一些重要發展簡表(PartⅡ)。 40
表1-3 人體骨骼與牙齒的成分及結構參數之比較表。 42
表1-4 自然骨的機械性質。 43
表1-5 氫氧基磷灰石的物理及化學性質。 47
表1-6 氫氧基磷灰石(HA)植入材的發展。 49
表2-1 常見的鈣磷系骨水泥鹽類及磷酸鈣鹽類名稱及其簡稱。 76
表2-2 以磷灰石相為主要產物的商用鈣磷系骨水泥。 78
表2-3 鈣基骨水泥應用範圍。 79
表2-4 一般常用之人工體液。 80
表2-5 生物相容性測試清單。 82
表2-6 α相及β相半水硫酸鈣的基本性質。 83
表2-7 HA粉末的(1)比表面積及(2)粒徑分布。 93
表2-8 複合材粉末與硬化劑之百分比。 93
表3-1 實驗所用藥品名稱及來源。 98
表3-2 淬取溶液的條件及方式。 104
表4-1-2-1 酸性溶液的種類及pH值與硫酸鈣工作及硬化時間關係 129
表4-1-2-2 鹼性溶液的種類及pH值與硫酸鈣工作及硬化時間關係 129
表4-1-3-1 調整特殊硬化劑的酸鹼值對離酸鈣骨水泥工作及硬化時間之影響 140
表4-1-3-2 調整特殊硬化A的酸鹼值對離酸鈣骨水泥工作及硬化時間之影響 140
表4-2-2-1硬化劑特殊硬化劑各濃度之pH值 156
表4-2-2-2 磷酸鈣/硫酸鈣自製複合骨水泥與不同濃度硬化劑的工作及硬化時間關係 156


圖目錄
圖1-1 人體骨骼構造,緻密骨、皮質骨及骨基質示意圖。 45
圖1-2 人體牙齒構造,琺瑯質、象牙質、牙骨質等構造示意圖。 46
圖1-3 氫氧基磷灰石沿著[0001]方向之晶體結構圖。 48
圖1-4 HA失序排列示意圖。 48
圖2-1 不同磷酸鈣鹽在水中的等溫溶解曲線圖,溶解度以在溶液中的鈣離子總量做為代表。 77
圖2-2 TTCP、DCPA及HA在25℃下的等溫曲線圖。 78
圖2-3 晶粒成長與持壓關係圖。 84
圖2-4 硫酸鈣在不同溫度及條件下熱處理的產物。 85
圖2-5 α相及β相半水硫酸鈣的SEM圖片。 86
圖2-6 半水硫酸鈣的繞射峰圗。 86
圖2-7 二水硫酸鈣的繞射峰圗。 86
圖2-8 各相硫酸鈣在不同溫度下之水中溶解度。 87
圖2-9 HA骨水泥中含有不同重量的硫酸鈣對抗壓強度的影響。 87
圖2-10 浸泡鹽水中五天後複合材強度衰退圖。 88
圖2-11 不同cement之抗壓強度。 88
圖2-12 以不同比例硫酸鈣混合之cement B和cement C抗壓強度。 89
圖2-13 抗壓強度與CaSO4・1/2H2O / α-TCP 相對含量之關係。 89
圖2-14 CaSO4・1/2H2O、CaSO4・2H2O、CDHA的XRD相對強度關係 90
圖2-15 不同CaSO4・2H2O含量的骨水泥其浸泡時間與抗壓強度之關係圖 90
圖2-16 添加不同重量百分比的CSH與setting time之關係圖。 91
圖2-17 複合材抗壓強度與時間之關係圖。 91
圖2-18 生物活性玻璃材料的濃度對硬化時間及抗壓強度的影響。 92
圗3-1 實驗流程圖(I)。 99
圖3-2 抗壓強度測試試片示意圖。 100
圖3-3 硬化時間測量儀器示意圖。 101
圖3-4 X光繞射儀之基本原理。 102
圖3-5 SEM主要構造示意圖。 103
圗3-6 實驗流程圖(II)。 111
圖3-7 pH meter SP-2300。 112
圖3-8 超高解析場發掃描式電子顯微鏡(UHRFE-SEM)。 113
圖4-1-1-1 酸性溶液影響硫酸鈣骨水泥抗壓強度結果。 119
圖4-1-1-2 鹼性溶液影響硫酸鈣骨水泥抗壓強度結果。 120
圗4-1-1-3 以水溶液(a)為對照組,硫酸鈣骨水泥以(b)鹽酸和(c)磷酸作硬化劑,浸泡一天的微結構比較 121
圗4-1-1-4 以水溶液(a)為對照組,硫酸鈣骨水泥以碳酸鈉(b)和特殊硬化A(c)作硬化劑,浸泡一天的微結構比較。 122
圖4-1-1-5 硫酸鈣骨水泥以不同硬化劑,浸泡一天後與原始粉末及硫酸鈣骨水泥和純水反應泡一天的XRD圖比較。 123
圖4-1-2-1 改變特殊硬化劑濃度對硫酸鈣骨水泥浸泡Hanks’ solution ㄧ天抗壓強度結果。 130
圖4-1-2-2特殊硬化A濃度對硫酸鈣骨水泥浸泡Hanks’ solution ㄧ天抗壓強度結果。 130
圖4-1-2-3以(a)純水和不同濃度特殊硬化劑溶液(b)18.75Mm (c)0.0375M (d)0.075M (e)0.25M (f)0.5M (g)0.75M (h)1M為硬化劑浸泡一天後之結晶形態。 132
圖4-1-2-4 以不同濃度特殊硬化A溶液(a)18.75mM (b)0.0375M (c)0.075M (d)0.1M作為硬化劑浸泡一天後之結晶形態。 133
圖4-1-2-5 以純水和不同濃度特殊硬化劑溶液作為硫酸鈣骨水泥的硬化劑浸泡一天後之XRD分析。 134
圖4-1-2-6 以純水和不同濃度特殊硬化A溶液作為硫酸鈣骨水泥的硬化劑浸泡一天後之XRD分析。 135
圖4-1-3-1 調整特殊硬化劑溶液酸鹼值對硫酸鈣骨水泥浸泡
Hanks’ solution ㄧ天抗壓強度結果。 141
圖4-1-3-2 調整特殊硬化A溶液酸鹼值對硫酸鈣骨水泥浸泡
Hanks’ solution ㄧ天抗壓強度結果。 141
圗4-1-4-1 硫酸鈣骨水泥與0.0375M特殊硬化劑反應,反應最初15分鐘slurry的pH值變化。 144
圗4-1-4-2 硫酸鈣骨水泥與0.0375M特殊硬化劑反應自填模30分鐘後開始計時之乾抗壓強度。 144
圖 4-1-4-3 特殊硬化劑0.0375M與硫酸鈣骨水泥反應自填模30分鐘後開始計時(a)15分鐘後 (b)20分鐘後 (c)30分鐘後之微結構。 145
圖4-1-5-1 以純水、特殊硬化劑及特殊硬化A做為硫酸鈣骨水泥硬化劑的乾壓(air 1D)及不同天數之濕壓之抗壓強度結果比較。。 149
圖4-1-5-2 以0375M特殊硬化劑作為硫酸鈣骨水泥之硬化劑,浸泡不同天數(a)一天(b)七天(c)十四天(d)三十天之形態變化。 150
圖 4-1-5-3 以特殊硬化劑0.0375M做為硫酸鈣骨水泥硬化劑,浸泡不同天數XRD比較。 151
圗4-1-5-4 以特殊硬化劑0.0375M與硫酸鈣骨水泥反應浸泡不同天數Hanks’ solution的pH值。 152
圖4-2-1-1 磷酸鈣/硫酸鈣自製崩解性。 154
圖4-2-1-2 崩解性(塊狀)粉液比分別為0.30、0.33,硬化劑濃度0.6M 特殊硬化劑。 154
圖4-2-1-3 磷酸鈣/硫酸鈣自製 抗壓強度。 158
圖4-2-1-4 磷酸鈣/硫酸鈣自製骨水泥的細胞毒性測試結果。 159
圖4-2-2-2-1 磷酸鈣/硫酸鈣自製反應初期的pH。 162
圖4-2-2-3-1 磷酸鈣/硫酸鈣自製反應初期的XRD分析。 164
圖4-2-2-4-1 磷酸鈣/硫酸鈣骨水泥浸泡SBF中之SEM觀察。 166
圖4-2-3-1-1 磷酸鈣/硫酸鈣自製 抗壓強度。 168
圖4-2-3-2-1 磷酸鈣/硫酸鈣自製複合材添加0.6和0.5M 特殊硬化劑 L/P= 0.38長時間浸泡SBF抗壓強度關係圖。 170
圖4-2-3-3-1 磷酸鈣/硫酸鈣自製 0.6 特殊硬化劑,L/P= 0.38,長時間浸泡SBF之pH關係圖。 172
圖4-2-3-3-2 磷酸鈣/硫酸鈣自製 0.5 特殊硬化劑,L/P= 0.38,長時間浸泡SBF之pH關係圖。 172
圖4-2-3-4-1 磷酸鈣/硫酸鈣自製長時間浸泡SBF且每天更換SBF的XRD分析圖。 174
圖4-2-3-4-2 磷酸鈣/硫酸鈣複合骨水泥長時間浸泡SBF且不更換SBF的XRD分析圖。 175
圖4-2-3-4-3 磷酸鈣/硫酸鈣自製 0.6M 特殊硬化劑,L/P= 0.38不更換Hanks’ solution第42天試片的EDS分析。 175
圖4-2-3-5-1為磷酸鈣/硫酸鈣自製添加0.6M 特殊硬化劑,長時間浸泡SBF且每天更換SBF和不更換SBF的試片破斷面SEM圖。 177
圖4-2-3-6-1 磷酸鈣/硫酸鈣自製 長時間浸泡SBF的重量損失及其孔隙率。 179
圖4-2-4-1磷酸鈣與硫酸鈣複合骨水泥植入後4週及12週之初切觀察。 180
圖4-2-4-2 CBC-400植入後4週之組織切片觀察…………………….. 179
圖4-2-4-3磷酸鈣與硫酸鈣複合骨水泥植入後4週之組織切片觀察。 181
圖4-2-4-3磷酸鈣與硫酸鈣複合骨水泥植入後12週之組織切片觀察。 182
參考文獻 參考文獻
Al-Sanabani JS, Madfa AA, Al-Sanabani FA. Application of calcium phosphate materials in dentistry. Int J Biomater. 876132, 2013.
Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont. 15: 321-328, 2006.
Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25:1439-1451, 2004.
Bai B, Jazrawi L, Kummer F, Spivak J. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and management of vertebral compression fractures. Spine 24: 1521-1526, 1999.
Barralet J, Akao M, Aoki H, Aoki H. Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res 49:176-182, 2000.
Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 31 Suppl 4: 37-47, 2000.
Brown GD, Mealey BL, Nummikoski PV, Bifano SL, Waldrop TC. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. J Periodontol 69:146-157, 1998.
Brown WE, Chow LC. Singular points in the chemistry of teeth. J Dent. Res 54:74, 1975.
Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res Abs 207:62-672, 1983.
Brown WE, Chow LC. Dental resptorative cement pastes. US Patent 1985, No. 4518430.
Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
Brown WE, Epstein EF. Crystallography of tetracalcium phosphate. J Res Natl Bur Stand Sect A: Phys Chem 69: 547–551, 1965.
Calafiori R, Di Marco AG, Martino AG, Marotta AM. Preparation and characterization of calcium phosphate biomaterials. J Mater Sci: Mater Med 18: 2331–2338, 2007.
Callaghan JJ. Current concerts review: The clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J Bone Joint Surg Am 75: 299-310, 1993.
Campbell DG, Li P. Sterilization of HIV with irradiation: relevance to infected bone allografts. Aust N Z J Surg 69: 517-521, 1999.
Carvalho FG, Fucio SB, Pascon FM, Kantovitz KR, Correr-Sobrinho L, Puppin-Rontani RM. Effect of gamma irradiation on fluoride release and antibacterial activity of resin dental materials. Braz Dent J. 20:122-126, 2009.
Chen WC, Chern Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of TTCP/DCPA-based calcium phosphate cement. J Biomed Mater Res A. 64: 664–671, 2003.
Chen WC, Ju CP, Chern Lin JH. Variation in structure and properties of a non-dispersive TTCP/DCPA-derived calcium phosphate cement immersed in Hanks' solution. J Oral Rahab 34: 541-551, 2007.
Chen WC, Ju CP, Tien YC, Chern Lin JH. In vivo testing of nanoparticle-treated TTCP/DCPA-based ceramic surfaces. Acta Biomater 5: 1767-1774, 2009.
Chen WL, Fan NY, Lee JW, Lin RM, Ju CP, Chern Lin JH. Immersion-Induced Changes in Structure and Properties of a Calcium Sulfate Cement. Mater Trans 53(6): 1154-1158, 2012
Chern Lin JH, Ju CP, Chen WC, Lin KL, Wang IC. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface. US Patent 2005, No. 6960249.
Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 99: 954-964, 1991.
Chow LC. J Ceram Soc Japan Int Edn 99: 927, 1992.
Chow LC, Milenko Markovic, Stanislav A. Frukhtbeyn, Shozo Takagi. Hydrolysis of tetracalcium phosphate under a near-constant composition condition—effects of pH and particle size. Biomaterials 26: 393–401, 2005.
Chow LC, Takagi S. Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April: 20-24, 1974.
Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: an experimental study in goats. Clin Oral Implants Res 13: 304-311, 2002.
Doi Y, Shimizu Y, Moriwaki Y, Aga M, Iwanaga H, Shibutani T, Yamamoto K and Iwayama Y. Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials 22: 847-854, 2001.
Dorozhkin SV. Bioceramics based on Calcium Orthophosphates. Biomaterials 31: 1465-1485, 2010.
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 1:121-164, 2011.
Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 8:963-977, 2012.
Dorozhkin SV. Calcium orthophosphates and human beings: a historical perspective from the 1770s until 1940. Biomatter. 2: 53-70, 2012.
Dorozhkin SV. Calcium orthophosphates in dentistry. J Mater Sci Mater Med. 24:1335-63, 2013.
Driessens FCM, Verbeeck RMH. Relation between physico-chemical solubility and biodegradability of calcium phosphates. In: de Putter C, de Lange GL, de Groot K, Lee AJC. Implant materials in biofunction. Advances in Biomaterials. Amsterdam: Elsevier 105-112, 1988.
Driessens FCM, Verbeeck RMH. Biominerals. CRC Press, Boca Ration, Boston, 37-59, 1990.
Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
Dubok VA. Bioceramics - Yesterday, today, tomorrow. Powder Metall Met Ceram 39: 381-394, 2000.
Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications. Part II: precipitate formation during setting reactions. J Mater Sci Mater Med 10: 177-183, 1999.
Frankenburg EP, Goldstein SA, Bauer TW, Harris SA, Poser RD. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 80: 1112–1114, 1998.
Gbureck U, Probst J, Thull R. Surface properties of calcium phosphate particles for self setting bone cements. Biomol Eng 19: 51-55, 2002.
Geraci G, Lo Iacono G, Lo Nigro C, Cannizzaro F, Cajozzo M, Modica G. Asymptomatic bone cement pulmonary embolism after vertebroplasty: case report and literature review. Case Rep Surg. 2013:591432, 2013.
Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater 6: 2863-2873, 2010.
Hamanishi C, Kitamoto K, Ohura K, Tanaka S, Doi Y. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement. J Biomed Mater Res 32: 383-389, 1996.
Hao H, Amizuka N, Oda K, Fujii N, Ohnishi H, Okada A, Nomura S, Maeda T. A histological evaluation on self-setting α-tricalcium phosphate applied in the rat bone cavity Biomaterials 25: 431-442, 2004.
Harving S, Soballe K, Bunger C. A method for bone cement interface thermometry. Acta Orthop Scand 62: 546-548, 1991.
Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser CH, van Landuyt P. Augmentation of mechanical properties in osteoporotic vertebral bones-a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10: 164-171, 2001.
Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early result. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9: 445-450, 2009.
Hench LL, Ethridge EC. Biomaterials: An interfacial approach. Academic press, New York, 1982.
Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991; 74:1487-1510.
Hing KA, Wilson LE, Buckland T. Comparative performance of three ceramic bone graft substitute. Spine J 7: 475-490, 2007.
Hockin HK Xua, Lisa E Carey, Carl G Simon Jr, Takagi S, Chow LC. Premixed calcium phosphate cements: Synthesis, physical properties, and cell cytotoxicity. Dent Mater 23: 433–441, 2007.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat 8:131-140, 1982.
Hyakuna K, Yamamuro T, Kotoura Y, Oka M, Nakamura T, Kitsugi T, Kokubo T, Kushitani H. Surface reactions of calcium phosphate ceramics to various solutions. J Biomed Mater Res 24: 471-488, 1990.
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 29: 1537-1543, 1995.
Ishikawa K, Takagi S, LC. Chow, Ishikawa Y. Properties and mechanisms of fast-setting calcium phosphate cements. J Mater Sci Mater Med 6: 528-533, 1995.
Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 157: 259-278, 1981.
Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 11: 2027-2035, 1976.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1:79-92, 1977.
Jarcho M, Salsburry RL, Thomas MB. Synthetic and fabrication of β-TCP ceramic for potential prosthesis application. Mater Sci 1979;14:142.
Karpukhin IA, Vladimirov VS, Moizis SE. A mechanism for phosphate hardening and prospects for the use of metal, phosphate materials (a review). Part I. The nature of hydrogen bonding and its function in the mechanism of phosphate hardening. Refract Ind Ceram; 46: 180-186.
Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature 204:1050-1052, 1964.
Kitsugi T, Yamamuro T, Nakamura T, Oka M. Transmission electron microscopy observation at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials 16: 1101-1107, 1995.
Knaack D, Goad MEP, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Duke Lee D. Resorbable calcium phosphate bone substitute. J Biomed Mater Res Part B: Appl Biomater 11: 399-409, 1998.
Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty-an experimental study in sheep. J Cranio Maxill Surg 33: 37-44, 2005.
LeGeros RZ. Properties of osteoconductive biomaterials: Calcium phosphates. Clin Orthop Relat R 395: 81-98, 2002.
LeGeros RZ, Orly I, Gregoire M, Daculsi G. Substrate surface dissolution and interfacial biological mineralization. University of Toronto Press, Toronto, Canada, 76-88, 1991.
Lin KL, Chern Lin JH, Ju CP. Transmission Electron Microscopic Study of Whisker Formation on Tetracalcium Phosphate in Hydrochloric Acid. Mater Trans 45: 3039-3043, 2004.
Lin KL, Ju CP, Chern Lin JH. Effect of heat treatment on setting behavior and compressive strength of tetracalcium phosphate cement. J Mater Sci 40:2631-2634, 2005.
Lisa E. Carey, Hockin H.K. Xu, Carl G. Simon Jr., Shozo Takagi, Laurence C. Chow. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26: 5002–5014, 2005.
Liu CS, Shao HF, Chen FY, Zheng HY. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials 24: 4103–4113, 2003.
Liu CS, Wei S and Chen J. Solution property of calcium phosphate cement hardening body. Mater Chem Phys 58: 78-82, 1999.
Liu FJ, Ren H, Shen Y, Ding WY, Wang LF. Pulmonary embolism caused by cement leakage after percutaneous kyphoplasty: a case report. Orthop Surg. 4:263-265, 2012.
Manoj KomaTH, Varma H K and Sivakumar R. On the development of an apatitic calcium phosphate bone cement. Bull Mater Sci 23: 135-140, 2000.
Mears DC. Metals in medicine and surgery Int Met Rev 22: 119-155, 1977.
Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials. 16: 855-860, 1995.
Monma H. Materials chemistry of calcium phosphate cement. J Jpn Soc Biomaterials 15:24–30, 1997.
Moon MH, Jo KH, Kim HW. Cardiac perforation caused by bone cement embolism. Arch Cardiovasc Dis. 106:413-4, 2013.
Neo M, Kotani S, Fujita Y, Nakamura T, Yama T, Bando Y, Ohtsuki C, Kokubo T. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: A study by scanning and transmission electron microscopy. J Biomed Mater Res 26: 255-267, 1992.
Nguyen H, Morgan DA, Forwood MR. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation? Cell Tissue Bank. 8: 81-91, 2007.
Nilsson M, Ferna´ndez E, Sarda S, Lidgren L, Planell JA. Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61: 600–607, 2002.
Nilsson M, Wielanek L, Wang JS, Tanner KE, Lidgren L. Factors influencing the compressive strength of an injectable calcium sulfate-hydroxyapatite cement. J Mater Sci Mater Med 14: 399-404, 2003.
Nomoto T, Haraguchi K, Yamaguchi S, Sugano N, Nakayama H, Sekino T, Niihara K. Hydrolyses of calcium phosphates-allografts composite in physiological solutions. J Mater Sci: Mater Med 17: 379–385, 2006.
Oguchi H, Ishikawa K, Mizoue K, Seto K, Eguchi G. Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 16: 33-38, 1995.
Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of and bone formation from, new betatricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 30: 193–200, 1996.
Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
Parsons JR, Ricci JL, Alexander H, Bajpai PK. Osteoconductive composite grouts for orthopedic use. Ann N Y Acad Sci 523: 190-207, 1988.
Pinchuk ND and Ivanchenko LA. Making Calcium Phosphate Biomaterials. Powder Metall Met Ceram 42: 7-8, 2003.
Putlyaev1 VI and Safronova TV. A New Generation of Calcium phosphate Biomaterials: The Role of Phase and Chemical Compositions. Glass Ceram 63: 3-4, 2006.
Rangavittal N, Landa-Ca´novas AR, Gonza´lez-Calbet JM, Vallet-Regı´ M. Structural study and stability of hydroxyapatite and β-tricalcium phosphate: Two important bioceramics. J Biomed Mater Res 51: 660-668, 2000.
Ravaglioli A and Krajewski A Bioceramics: materials, properties, applications. Chapman & Hall Press, London, 44-45, 1992.
Rebeca Alvarez, Louise A. Evans, Paul J. Milham, Michael A. Wilson. Effects of humic material on the precipitation of calcium phosphate. Geoderma 118: 245–260, 2004.
Romeo HE and Fanovich A MA. Synthesis of tetracalcium phosphate from mechanochemically activated reactants and assessment as a component of bone cements. J Mater Sci Mater Med 19: 2751–2760, 2008.
Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247: 220-222, 1974.
Sariibrahimoglu K, Leeuwenburgh SC, Wolke JG, Yubao L, Jansen JA. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J Biomed Mater Res A. 100: 712-719, 2012.
Sigaux J, Guignard S, Tuilier T, Eymard C, Gaston A, Chevalier X. Efficacity and feasibility of vertebroplasty for severe vertebral fracture: a retrospective study of 12 vertebroplasties. Joint Bone Spine. 80: 328-331, 2013.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 64: 1-58, 1993.
Song HY, Esfakur Rahman AHM, Lee BT Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. J Mater Sci: Mater Med 20: 935–941, 2009.
Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19: 1593-1599, 1998.
Takagi S, Chow LC. Formation of macropores in calcium phosphate cement implants. J Mater Sci Mater Med12: 135-9, 2001.
Takezawa Y, Doi Y, Shibata S, Wakamatsu N, Kamemizu H, Goto T, Iijima M, Moriwaki Y, Uno K, Kubo F, Haeuchi Y. Self-setting apatite accelerator, hydroxyapatite as setting accelerator. J Jpn Soc Dent Mat 6:426-431, 1988.
Tanahashi M. Fibrous hydroxyapatite grown in the gel system: effects of pH of the solution on the growth rate and morphology. J Mater Sci Mater Med 3:48-53, 1992.
TenHuisen KS, Brown PW. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4.2H2O and Ca4(PO4)2O. J Biomed Mater Res 36: 233-241, 1997.
Thomas MV, Puleo DA. Calcium Sulfate: Properties and Clinical Applications. J Biomed Mater Res B Appl Biomater 88: 597-610, 2009.
Thordarson D, Hedman T, Yetkinler D, Eskander E, Lawrence T, Poser R. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg 81A:239-246, 1999.
Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 27: 631–642, 2006.
Tsai CH, Chern Lin JH, Ju CP. Gamma radiation-induced changes in structure and properties of tetracalcium phosphate and its derived calcium phosphate cement. J Biomed Mater Res B Appl Biomater 80B: 244-252, 2007.
Tsai CH, Ju CP, Chern Lin JH. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 29: 984-993, 2006.
Tsai CH, Ju CP and Chern Lin JH. Morphology and mechanical behavior of TTCP-derived calcium phosphate cement subcutaneously implanted in rats. J Mater Sci Mater Med 19: 2407–2415, 2008.
Uwe Gbureck, Sofia Dembski, Roger Thull, Jake E. Barralet. Factors influencing calcium phosphate cement shelf-life. Biomaterials 26: 3691–3697, 2005.
Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater 7: 739-750, 2011.
Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 104: 820-832, 1990.
Wang IC, Ju CP, Chern Lin JH. Gamma-radiation effect on morphology and properties of TTCP/DCPA-derived calcium phosphate cement. Mater Trans 46: 1-5, 2005.
Wang IC, Chern Lin JH, Ju CP. Transmission electron microscopy study of surface treated tetracalcium phosphate. Mater Trans 46: 885-890, 2005.
Wang JC, Ko CL, Hung CC, Tyan YC, Lai CH, Chen WC, Wang CK. Deriving fast setting properties of tetracalcium phosphate/dicalcium phosphate anhydrous bone cement with nanocrystallites on the reactant surfaces. J Dent 38: 158-165, 2010.
Xie L, Monroe EA. Calcium phosphate dental cements. Mater Res Soc Symp Proc. 179: 25-39, 1997; 2002..
Xinde Cao, Willie G. Harris, Manohardeep S. Josan, Vimala D. Nair. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions. Sci Total Environ 383: 205–215, 2007.
Xiong Lu, Yang Leng. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 26: 1097–1108, 2005.
Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S, Hirano M. Takeuchi H. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 19: 1587-1591, 1998.
Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/ b-tricalcium phosphate ratios. Biomaterials 18: 1037–1041, 1997.
Yokoyama A, Yamamoto S, Kawasaki T, Kohgo T, Nakasu M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 23: 1091–1101, 2002.
darkwing.uoregon.edu/ ~louiso/
www.suntex.com.tw
www.gec.jp/CTT_DATA/WMON/CHAP_4/html/Wmon-094.html
張炳龍,ROSS 組織學, 合記圖書出版社, 1991。
王貴譽,微生物學,中華攝影,1993。
汪建民, 材料分析, 中國材料科學學會, 1998。
梁智仁,骨質疏鬆致骨折專治生物材料的研製與市場化,京港學術交流第五十四期,2002。
王盈錦、林峰輝、胡孝光、黃玲惠、黃義侑、蔡瑞瑩、闕山璋,生物醫學材料,合記圖書出版社,2002。
黃裕斌,生醫材料市場概況,工研院IEK, 201
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw