進階搜尋


下載電子全文  
系統識別號 U0026-1412201821573200
論文名稱(中文) 輥軋式裝置用於純銅粉末扁平化製程之參數研究
論文名稱(英文) Parametric Research on Flattening Process of Pure Copper Powders with Roller Equipment
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 1
出版年 107
研究生(中文) 尤柏鑅
研究生(英文) Bo-Heng Yo
學號 p46051050
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-王覺寬
口試委員-呂宗行
口試委員-黃揚升
中文關鍵字 扁平化製程  積層陶瓷電容  4N純銅粉末  循環經濟 
英文關鍵字 Flattening process  Multi-layer ceramic capacitor  Copper powder  Circular economy 
學科別分類
中文摘要 由於人類社會的蓬勃發展,致使地球的天然資源如:石油、礦產,漸漸消耗殆盡,如何解決資源短缺是現今各國政府棘手的問題。若能從廢料中取得原料並回收再利用,即可減緩自然資源消耗速率。台灣的天然資源匱乏,目前已無自產銅礦可供提煉。過去含銅產品分為兩大類,即電線電纜和銅合金產品,而電線電纜消耗佔全球精煉銅產量約三分之二。本研究以循環經濟的概念,將廢棄的銅電纜經由氣霧法將其熔煉產出球狀銅粉,再藉由自行開發的粉末扁平化裝置把球狀銅粉碾壓成片狀,最後應用於積層陶瓷電容上。
本研究使用氣霧法製程之4N純銅粉末,以輥軋式扁平化裝置進行參數的研究,過程中探討振動進料機的粉末進料率、輥輪轉速及輥輪線壓力等製程參數對於片狀銅粉特性之影響,並比較乾式及濕式輥軋兩種作法對於微結構及扁平比率之差異,最後找出最佳的製程參數。
研究結果顯示,乾式輥軋法在進料率48.8 g/min、輥軋轉速10 rpm及線壓力70 N/mm的操作參數下,經過重覆四次的輥軋後,可獲得最佳的扁平比率53.23%。而濕式輥軋的作法與乾式輥軋法作法相同,乙醇滴定流量為19.73 g/min,以避免銅粉在輥軋的過程中冷焊於輪面上。濕式輥軋法在各輥輪轉速下使用線壓力130 N/mm下進行輥軋,扁平比率約在23%左右,雖然扁平比率的表現不及乾式作法,但其微結構緻密度相當高是非常適合應用於積層陶瓷電容上,且濕式輥軋製程相較於傳統球磨可大幅減少時間及成本。
英文摘要 Due to the quick development of human society, it causes the earth’s natural resources such as oil and minerals are almost been consumed. If we can obtain the useful substance by recycling waste, then the natural resource consumption rate can be reduced. Nowadays, natural resources in Taiwan are not enough to produce copper mines for refining. In the past, products made of copper are classified into following two categories: electric wires and copper alloy products. It is estimated that two-thirds of the refined copper was used to produce electric wires. This study will follow the concept of circular economy, the wasted electric cable is melted by gas atomization to produce spherical copper powder, then which is rolled into flattened morphology by the self-developed flattening device. Finally, the flattened powder applied to the multilayer ceramic capacitor. In this study, we use pure copper (purity 99.99%) as the experimental material to study the parameters of the roll flattening device, the effects of parameters such as powder feed rate, roller speed, roller line pressure on the characteristics of flake copper powder are discussed. The optimization parameter is based on the microstructure of flake copper powder and flattening ratio. Results show that the flattening ratio is 53.23%.,as the powder feeding rate is 48.8 g/min, roller speed is 10 rpm and the roller line pressure is 70 N/mm after four times rolling without adding any coolant like Ethanol. To prevent the copper powder from being cold welded to the roller surface during the rolling process, we conducted the experiment by adding ethyl alcohol on the roller at the same time when the roller line pressure is 130 N/mm, the flattening ratio is decreased to 23%.Althought the flattening performance is not better than the method without adding the coolant, the micrograph of the flake copper powder by the scanning electron microscopy shows the fine microstructure in the surface morphology, which is useful to produce the multilayer ceramic capacitor. Consequently, the rolling process can be used to reduce time and cost compared to the conventional ball milling.
論文目次 摘要 I
英文延伸摘要(Extended Abstract) II
致謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
符號表 XVII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 積層陶瓷電容介紹 3
1.2.2 積層陶瓷電容總類 4
1.2.3 各種介電材料其性質與用途 6
1.2.4 應用於卑金屬電極積層陶瓷電容之微米級片狀粉末 8
1.2.5 機械合金化與高能量球磨 11
1.2.6 球磨機種類 11
1.2.7 金屬粉末輥磨扁平化方式 15
1.3 研究動機與目的 17
第二章 實驗設備與檢測儀器 19
2.1 輥軋式粉末製程系統 19
2.1.1 旋風粒徑分級機 20
2.1.2 振動進料機 22
2.1.3 三相齒輪減速機馬達 23
2.1.4 馬達變頻器 23
2.1.5 S型荷重元 24
2.1.6 荷重顯示器 25
2.1.7 真空乾燥器 25
2.2 檢測儀器 26
2.2.1 光學顯微鏡 26
2.2.2 掃描式電子顯微鏡(SEM) 27
2.2.3 雷射繞射粒徑分析儀 28
2.2.4 電子天秤 30
第三章 實驗步驟及方法 32
3.1 實驗參數規劃 32
3.2 實驗材料 35
3.3 扁平比率、水力直徑及縱橫比定義 36
3.4 影像軟體數據分析及計算 37
3.5 濕式輥軋製程 39
3.6 粉體真空乾燥 40
第四章 結果與討論 41
4.1 振動進料機穩定度及進料率量測 41
4.2 乾式輥軋法結果 44
4.2.1 扁平比率W37~100隨輥輪轉速變化之影響 44
4.2.2 大粒徑片狀粉末比率W100↑隨輥輪線壓力變化之影響 45
4.2.3 扁平比率W37~100隨著線壓力變化之影響 47
4.2.4 小粒徑片狀粉比率W37↓隨線壓力變化之影響 49
4.2.5輥輪線壓力對於粒徑分佈之影響 50
4.2.6 縱橫比隨線壓力變化之影響 51
4.2.7 線壓力對於粉末特性之影響機制 52
4.2.8 線壓力變化對於粉末特性之影響 54
4.2.9 輥輪轉速對於粉末特性影響之機制 57
4.2.10 輥輪轉速變化對於粉末特性之影響 58
4.2.11片狀銅粉粒徑範圍及厚度大小 61
4.2.12 扁平比率隨著速度比變化之影響 62
4.3 濕式輥軋法結果 65
4.3.1 粉末乾燥品質檢測 65
4.3.2 濕式輥軋法扁平比率隨線壓力變化之影響 66
4.3.3 濕式輥軋法扁平比率隨輥輪轉速變化之影響 67
4.3.4 濕式輥軋法輥輪線壓力對於粉末特性之影響 68
4.3.5 濕式輥軋法片狀銅粉粒徑及厚度大小 72
4.3.6 濕式及乾式輥軋片狀銅粉微結構差異 73
第五章 結論 76
5.1 結論……. 76
參考文獻 79

參考文獻 [1] 郭學益,田慶華, "高純金屬材料,北京冶金工業出版社," 2010.
[2] V. Rajkovic, D. Bozic, and M. T. Jovanovic, "Characterization of prealloyed copper powders treated in high energy ball mill," Materials Characterization, vol. 57, no. 2, pp. 94-99, 2006.
[3] X. Xiao, Z. Zeng, Z. Zhao, and S. Xiao, "Flaking behavior and microstructure evolution of nickel and copper powder during mechanical milling in liquid environment," Materials Science and Engineering: A, vol. 475, no. 1-2, pp. 166-171, 2008.
[4] J. E. CENTER. (2017). 多層陶瓷電容展望報告. Website: https://news.cnyes.com/news/id/3722883
[5] H. Kishi, Y. Mizuno, and H. Chazono, "Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives," Japanese Journal of Applied Physics, vol. 42, no. Part 1, No. 1, pp. 1-15, 2003.
[6] Y. Inomata and Y. Okino, "Multilayer ceramic capacitor United States Patent," 2001.
[7] D.-H. Im, S.-H. Hyun, S.-Y. Park, B.-Y. Lee, and Y.-H. Kim, "Preparation of Ni paste using binary powder mixture for thick film electrodes," Materials Chemistry and Physics, vol. 96, no. 2-3, pp. 228-233, 2006.
[8] S. P. Wu, R. Y. Gao, and L. H. Xu, "Preparation of micron-sized flake copper powder for base-metal-electrode multi-layer ceramic capacitor," Journal of Materials Processing Technology, vol. 209, no. 3, pp. 1129-1133, 2009.
[9] C.Suryanarayana, "Powder metal technologies and applications. ASM Handbook, vol. 7.Materials Park, OH: ASM International," p. 80~90, 1998.
[10] C. Suryanarayana, "Mechanical alloying and milling review," 2001.
[11] P. T. P. Chin Z.H, "Mater Sci Forum 235-238:121-6.," 1997.
[12] B. D. Kis-Varga, "Mater Sci Forum 225-227:465-70," 1996.
[13] 陽開新,戴少銀, "磁性金屬粉末壓延扁平化的方法 專利公開號 CN 103350225 A," 2013.
[14] 陽開新,戴少銀, "磁性金屬粉末初步扁平化裝置 專利公開號 CN 103433495 A," 2013.
[15] 陽開新,戴少銀, "鱗片狀金屬軟磁微粉的製造方式 專利公開號 CN 103480852 B," 2016.
[16] 江粉磁材技術研發有限公司, "磁性金屬粉末的扁平化方法 專利公開號 CN 104249155 B," 2016.
[17] W. Polkowski, P. Jóźwik, M. Polański, and Z. Bojar, "Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient," Materials Science and Engineering: A, vol. 564, pp. 289-297, 2013.
[18] 邱政勳,陳志宇,徐梓青, "奈米陶瓷粉末之真空乾燥研究研究成果報告," 2007.
[19] Z. K. Yang, "金屬微粒於斜板上流動之特性研究及其輥軋應用," 2018.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw