進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1412201514372400
論文名稱(中文) 牙科第五級複合樹脂填補在咬合力作用下之機械行為
論文名稱(英文) Mechanical behaviors of dental class V restorations under occlusal loading
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 104
學期 1
出版年 104
研究生(中文) 黃洛豪
研究生(英文) Lo-Hao Huang
學號 N16021414
學位類別 碩士
語文別 英文
論文頁數 73頁
口試委員 指導教授-陳元方
共同指導教授-莊淑芬
口試委員-張志涵
口試委員-陳永崇
中文關鍵字 牙科第五級複合樹脂修復  咬合力  聲發射  數位影像相關法  即時性觀測  有限元素分析 
英文關鍵字 dental class V composite restorations  occlusal force  acoustic emission  digital image correlation  real-time measurement  finite element analysis 
學科別分類
中文摘要 第五級窩洞在牙科中是常見的問題,但其窩洞特別位置,介於牙釉質及牙本質交界處的特質,及其承受的咬合力常提高損壞的可能性。牙齒受到咬合力作用下,在齒頸部會造成應力集中,進而造成樹脂和牙齒之間介面的損壞和樹脂的脫落。本研究目的是探討咬合力對於牙科第五級窩洞填補所造成的影響,利用實驗及數值分析不同樹脂修復對於在承受咬合力下修復處的變形、應力分佈以及破壞。
本研究使用四十八顆完整的小臼齒,其上製備盒狀窩洞,接著將牙齒分為六大組,以五種複合樹脂單獨或混和的形式填補: Filtelk Z350、Filtek P60、Filtek Z350 flowable、Filtek Bulkfill、Surifil SDR。Z350組的填補材料為Z350;P60組的填補材料為P60;Z350F組為先以Z350 flowable襯底,再填補Z350;P60F組為先以填補Z350 flowable襯底,再填補P60;FB組的填補材料為Filtek bulkfill;SDR組的填補材料為SDR。五種材料的彈性係數使用動態材料分析儀進行量測。在牙齒承受機械力的過程中,以音洩感測器偵測樹脂修復處因破壞所發出的聲發射,並使用影像感應器以連續取像的方式記錄複合樹脂受機械力後變形的影像,藉由數位影像相關法計算牙齒受機械力後,修復處的位移及應變。在應力分析方面,採用有限元素分析法,以靜載重的方式模擬出受機械力的作用下,牙齒修復處的應力分佈情形。
經由動態分析儀量測,這五種樹脂的彈性係數分別為: 8.8GPa (Z350)、13.4GPa (P60)、4.5GPa (Z350 Flowable)、5.5GPa (Filtek bulkfill)、7GPa (SDR)。由數位影像相關法量測發現,P60在填補上端及下端擁有最小的y方向位移,但是在軸向擁有最大的x方向位移。在應變的分析方面, FB不論在250N或500N的力量下, y方向及x方向都有很大的位移。P60 在頂部和底部都呈現較小的y方向應變,然而Z350、Z350F及P60F在樹脂底部都有較大的y方向。FB及SDR呈現均勻但較大的y方向應變。Z350在樹脂底部靠近牙釉質的區域有較大的剪應變,FB則在內側有較大的剪應變產生。從音洩的結果得知,填補襯底的修復較無填補襯底的修復擁有較多的音洩信號,另一方面,FB組產生了最多的音洩信號。在有限元素模擬結果中發現,以流動樹脂襯底減小Z350樹脂和窩洞介面的最大主應力,但其von-Mises stress和最大剪應力都呈現高應力於底部的牙本質處。
從結果得知,P60呈現較小的水平位移、較低的剪應力和較少的破壞。流動性樹脂做為襯底僅在Z350F組有緩衝應力的表現,但相較於無襯底組別,反而有較多的聲發射訊號。Bulk fill的組別差異較大,可能無法承受較大的力量。
英文摘要 Dental class V cavities are common tooth lesions, but their failure rates are high due to complicated margin locations on enamel and dentin, and occlusal loading. The occlusal force leads to stress at the resin-tooth interfaces which may cause marginal and interfacial debonding. This study is aimed to investigate the effects of restorative materials on deformation, stress distributions, and debonding of class V composite restorations under mechanical loading by an experimental-numerical analysis.
Forty-eight premolars were collected. Each tooth was prepared with one box-cavity. These teeth were divided into six groups (n=8) to receive different composite material restorations: a nanofill composite Filtek Z350 filling (Z350); a packable composite Filtek P60 filling (P60); Filtek Z350 filling with a flowable composite (Filtek Z350 Flowable) lining (Z350F); P60 filling with Filtek Z350 Flowable lining (P60F); and two bulkfill composite filling FB and SDR. The elastic modulus of these five composites were measured by dynamic material analysis (DMA). A mechanical load was applied on the buccal cusps of the restored teeth. During two-step loading to 250N and 500N, the acoustic emission (AE) sensor recorded the signal of interfacial debonding and a CCD camera captured their deform images. A digital-image-correlation (DIC) program Vic-2990 was used to calculate the full-field deformation. A corresponding finite element analysis (FEA) simulated the loading by a static structural module, accordingly to analyze the stress distribution.
The elastic moduli of P60, Z350, Z350 Flowable, Filtek Bulkfill and SDR were 13.4, 8.8, 4.5, 5.5 and 7 GPa, respectively. In the displacement analysis, P60 showed the smallest y-displacements on the top and bottom margins but great x-displacements on the axial margin. FB showed the greatest y-displacements under both 250N and 500N. In the strain analysis, P60 showed less y-strain, while Z350, Z350F and P60F showed increased y-strain on the bottom area. FB and SDR showed uniformly great y-strain (0.003-0.005). Z350 showed greater shear strain on the bottom margin, while FB showed the greatest shear strain on the axial margin. The lined groups showed more AE hits than the unlined groups, and the FB showed the most hits. FEA showed that the flowable lining could decrease the principal stress on the tooth-composite interface. The highest von-Mises stress and maximum shear stress located close to cervical region.
With these results, P60 showed less horizontal deformation, low shear stress, and debonding. Flowable linings buffered stress only in Z350F, but increased AE hits compared to unlined groups. Bulk fill composites presented various responses, but could not sustain the large force on class V restorations.
論文目次 Content
Abstract I
中文摘要 IV
誌謝 VII
Content VIII
List of figures X
List of tables XII
Chapter 1 Introduction 1
1.1. Class V Composite Restoration 1
1.1.1. Etiology of class V dental cavity 1
1.1.2. Composite materials 3
1.1.3. Problems of class V composite restoration 7
1.2. The effects of occlusal load on class V composite restorations 8
1.3. Using different composite materials to improve class V restorations 10
1.3.1. The effects of composite materials 10
1.3.2. The effects of a lower-modulus resin lining 12
1.4. Examination of restorative quality 13
1.4.1. DIC 14
1.4.2. AE 17
1.5. Motivation and objectives 19
Chapter 2 Materials and methods 20
2.1. Specimen preparation 21
2.2 Examination of material property 23
2.3. Acoustic emission technique 24
2.3.1. Experimental apparatuses for AE 24
2.3.2. Coupled quality verification 25
2.4. Measurement of deformation and strain by DIC 26
2.4.1. Experimental apparatuses for DIC 26
2.4.2. The verification of DIC 27
2.5 Loading test 28
2.6 Finite element analysis 30
2.6.1. The 3D model construction 31
2.6.2. Assumption and FEM simulated 33
Chapter 3 Results 35
3.1. The elastic modulus of resin composites 35
3.2. Acoustic emission analysis 36
3.2.1. AE hits with loading 36
3.3. 2D DIC deformation and strain measurement 38
3.3.1. Displacement measurement on lateral surface 39
3.3.2. Y-direction strain measurement on lateral surface 43
3.3.3. Shear strain measurement on lateral surface 48
3.4. Finite element analysis 52
3.4.1 Verifying the FEA with the deformation obtained by DIC 52
3.4.2 The stress analysis on tooth 53
3.5 Examination of microleakage 61
3.5.1 The microleakage score 62
Chapter 4 Discussion 64
Chapter 5 Conclusion 69
Reference 70
參考文獻 Reference
[1] Dzakovich JJ, Oslak RR. In vitro reproduction of noncarious cervical lesions. The Journal of prosthetic dentistry. 2008;100:1-10.
[2] Perez CdR, Gonzalez MR, Prado NAS, de Miranda MSF, Macêdo MdA, Fernandes BMP. Restoration of noncarious cervical lesions: when, why, and how. International journal of dentistry. 2011;2012.
[3] Sarode GS, Sarode SC. Abfraction: A review. Journal of oral and maxillofacial pathology: JOMFP. 2013;17:222.
[4] Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials: Elsevier Health Sciences; 2012.
[5] Manhart J, Kunzelmann K-H, Chen H, Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dental Materials. 2000;16:33-40.
[6] Li Q, Jepsen S, Albers H-K, Eberhard J. Flowable materials as an intermediate layer could improve the marginal and internal adaptation of composite restorations in Class-V-cavities. Dental Materials. 2006;22:250-7.
[7] Braga RR, Ferracane JL. Alternatives in polymerization contraction stress management. Critical Reviews in Oral Biology & Medicine. 2004;15:176-84.
[8] Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clinical oral investigations. 2009;13:427-38.
[9] Roggendorf MJ, Krämer N, Appelt A, Naumann M, Frankenberger R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. Journal of Dentistry. 2011;39:643-7.
[10] Burrow M, Tyas M. Clinical evaluation of three adhesive systems for the restoration of non-carious cervical lesions. Operative Dentistry. 2007;32:11-5.
[11] Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dental materials. 2013;29:59-84.
[12] Heymann HO, Sturdevant JR, Bayne S, Wilder AD, Sluder TB, Brunson WD. Examining tooth flexure effects on cervical restorations: a two-year clinical study. The Journal of the American Dental Association. 1991;122:41-7.
[13] Swift Jr EJ, Perdigao J, Heymann HO. Bonding to enamel and dentin: a brief history and state of the art, 1995. Quintessence international (Berlin, Germany: 1985). 1995;26:95-110.
[14] Ichim I, Schmidlin P, Kieser J, Swain M. Mechanical evaluation of cervical glass-ionomer restorations: 3D finite element study. Journal of dentistry. 2007;35:28-35.
[15] Ichim I, Schmidlin P, Li Q, Kieser J, Swain M. Restoration of non-carious cervical lesions: Part II. Restorative material selection to minimise fracture. dental materials. 2007;23:1562-9.
[16] Lawn BR, Lee JJ. Analysis of fracture and deformation modes in teeth subjected to occlusal loading. Acta Biomaterialia. 2009;5:2213-21.
[17] Senawongse P, Pongprueksa P. Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. Journal of Esthetic and Restorative Dentistry. 2007;19:265-73.
[18] Van Meerbeek B, Peumans M, Verschueren M, Gladys S, Braem M, Lambrechts P, et al. Clinical status of ten dentin adhesive systems. Journal of dental research. 1994;73:1690-702.
[19] Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM. The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength. dental materials. 2009;25:188-97.
[20] Kemp-Scholte CM, Davidson C. Marginal sealing of curing contraction gaps in class V composite resin restorations. Journal of Dental Research. 1988;67:841-5.
[21] Jensen M, Chan D. Polymerization shrinkage and microleakage. Posterior composite resin dental restorative materials. 1985:243-62.
[22] Suliman A-H, Boyer DB, Lakes RS. Polymerization shrinkage of composite resins: comparison with tooth deformation. The Journal of prosthetic dentistry. 1994;71:7-12.
[23] Meredith N, Setchell DJ. In vitro measurement of cuspal strain and displacement in composite restored teeth. Journal of Dentistry. 1997;25:331-7.
[24] Montes MAJR, de Goes MF, da Cunha MRB, Soares AB. A morphological and tensile bond strength evaluation of an unfilled adhesive with low-viscosity composites and a filled adhesive in one and two coats. Journal of Dentistry. 2001;29:435-41.
[25] Davidson C, Feilzer A. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. Journal of Dentistry. 1997;25:435-40.
[26] Senawongse P, Pongprueksa P, Tagami J. The effect of the elastic modulus of low-viscosity resins on the microleakage of Class V resin composite restorations under occlusal loading. Dental materials journal. 2010;29:324-9.
[27] Yazici A, Baseren M, Dayangac B. The effect of flowable resin composite on microleakage in class V cavities. Operative Dentistry. 2003;28:42-6.
[28] Ernst C-P, Galler P, Willershausen B, Haller B. Marginal integrity of class V restorations: SEM versus dye penetration. Dental Materials. 2008;24:319-27.
[29] Heintze SD. Systematic reviews: I. The correlation between laboratory tests on marginal quality and bond strength. II. The correlation between marginal quality and clinical outcome. The journal of adhesive dentistry. 2006;9:77-106.
[30] Tay FR, Pashley DH, Garcia-Godoy F, Yiu C. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part II. Silver tracer penetration evidence. American Journal of Dentistry. 2004;17:315-22.
[31] Heintze S, Forjanic M, Cavalleri A. Microleakage of Class II restorations with different tracers--comparison with SEM quantitative analysis. The journal of adhesive dentistry. 2008;10:259-67.
[32] Ichim I, Li Q, Loughran J, Swain M, Kieser J. Restoration of non-carious cervical lesions: part I. Modelling of restorative fracture. dental materials. 2007;23:1553-61.
[33] Clelland NL, Gilat A, McGlumphy EA, Brantley WA. A photoelastic and strain gauge analysis of angled abutments for an implant system. The International journal of oral & maxillofacial implants. 1992;8:541-8.
[34] Li J, Fok AS, Satterthwaite J, Watts DC. Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dental Materials. 2009;25:582-8.
[35] Chuang S-F, Chen T, Chang C-H. Application of digital image correlation method to study dental composite shrinkage. Strain. 2008;44:231-8.
[36] Li J-y, Lau A, Fok AS. Application of digital image correlation to full-field measurement of shrinkage strain of dental composites. Journal of Zhejiang University SCIENCE A. 2013;14:1-10.
[37] Liu X, Fok A, Li H. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration. Dental Materials. 2014;30:327-33.
[38] Kim RJ-Y, Choi N-S, Ferracane J, Lee I-B. Acoustic emission analysis of the effect of simulated pulpal pressure and cavity type on the tooth–composite interfacial de-bonding. Dental Materials. 2014;30:876-83.
[39] Lin C-L, Kuo W-C, Chang Y-H, Yu J-J, Lin Y-C. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography. Dental Materials. 2014;30:910-6.
[40] Katona T, Winkler M. Stress analysis of a bulk-filled class V light-cured composite restoration. Journal of dental research. 1994;73:1470-7.
[41] Kanemura N, Sano H, Tagami J. Tensile bond strength to and SEM evaluation of ground and intact enamel surfaces. Journal of dentistry. 1999;27:523-30.
[42] Burrow M, Nopnakeepong U, Phrukkanon S. A comparison of microtensile bond strengths of several dentin bonding systems to primary and permanent dentin. Dental materials. 2002;18:239-45.
[43] Attar N, Tam LE, McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. Journal-Canadian Dental Association. 2003;69:516-21.
[44] Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Operative Dentistry. 2013;38:618-25.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-12-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw