進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1410201914574100
論文名稱(中文) 氣態氫化鈉分子D1Σ+與氘化鈉分子C1Σ+能態的位能探討
論文名稱(英文) Study on the Potentials of the NaH D1Σ+ and the NaD C1Σ+ States
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 108
學期 1
出版年 108
研究生(中文) 黃俊
研究生(英文) Chun Huang
學號 L36061026
學位類別 碩士
語文別 英文
論文頁數 163頁
口試委員 指導教授-黃守仁
口試委員-鄭沐政
口試委員-李賢哲
中文關鍵字 氫化鈉  氘化鈉  雷射光譜  登亥姆係數  RKR位能曲線  同位素轉移 
英文關鍵字 sodium hydride  sodium deuteride  laser spectroscopy  Dunham coefficients  RKR potential curve  isotope shift 
學科別分類
中文摘要 本研究整理與再分析氫化鈉D1Σ+能態以及氘化鈉C1Σ+能態。氫化鈉D1Σ+方面,整理了本實驗室楊承翰、江仁楙、以及蕭翊翔學長的實驗數據,藉由最新發表的氫化鈉A1Σ+的振轉能態的能量作為中間態的能量,加上重新校正過的probing雷射能量值計算出D1Σ+各個振轉能級的絕對能量值,此方法消弭了不同實驗數據的誤差值。利用校正過的實驗數據,搭配理論計算的D1Σ+位能曲線[ Can. J. Phys. 87, 543 (2009)],分析出D state兩個位能井的振轉量子數及能量。經由些微改變理論計算位能曲線以及實驗數據的登亥姆係數運算結果,獲得更為吻合實驗數據的位能曲線。
氘化鈉C1Σ+方面,整理了本實驗室林明弘及鄭守恩學長的實驗數據,藉由重新校正過實驗所使用中間態氘化鈉A1Σ+振轉能態的能量,對比了經過同位素轉移的氫化鈉C1+能態[ J. Chem. Phys. 148, 114301 (2018) ],與同位素轉移後的數值較為接近,故以校正後的數據導出NaDC1Σ+雙位能井之下的RKR位能曲線。於雙位能井部分,利用NaH C1Σ+雙位能井位能曲線加以變形,擬合出符合NaD C1Σ+實驗數據值的位能曲線。
英文摘要 In this work, the experimental data of the NaH D1Σ+ state and the NaD C1Σ+ are reanalyzed. For the D1Σ+ state, the experimental works done by Yang, Chiang, and Hsiao are recalibrated by replacing the original intermediate A1Σ+ state with the latest published values and recalibrating the probing laser to calculate the absolute energy; this method diminishes the deviation among the different experimental works. By exploiting the recalibrated experimental signals and the potential energy curve of the theoretical ab initio calculation [ Can. J. Phys. 87, 543 (2009)], the vibrational quantum numbers and the corresponding rovibrational energies are indicated. Moreover, through the slight deformation of the theoretical potential curve, the new potential energy curve that accords better with the experimental data is presented.
For the NaD C1Σ+ state, experimental works performed by Lin and Cheng are reanalyzed. By recalibrating the NaD A1Σ+ intermediate state, the recalibrated experimental signals of the C1Σ+ state fits well with the isotopically shifted potential curve of the NaH C1Σ+ state [ J. Chem. Phys. 148, 114301 (2018) ], so these signals are applied to derive the RKR potential energy curve below the double-well region. Besides, by slightly deforming the potential energy curve of the double-well NaH C1Σ+ state, the potential energy curve that accords well with the experimental data of the C1Σ+ state is proposed.
論文目次 摘 要 I
ABSTRACT II
誌 謝 III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES IX
CHAPTER 1 INTRODUCTION 1
1.1 Research motivation 1
1.2 Literature review 4
1.2.1 The research history of NaH and NaD 4
1.2.2 The research of NaH D1+ state 6
1.2.3 The research of NaD C1+ state 12
CHAPTER 2 THEORIES of LASER SPECTROSCOPY 15
2.1 The Schrödinger equation 15
2.2 The Born-Oppenheimer approximation 15
2.3 Rovibrational spectroscopy of diatomic molecule 16
2.4 The Dunham expansion 18
2.5 The Term Symbol of the diatomic molecule 19
2.6 The selection rules 20
2.7 The Franck-Condon principle 21
2.8 The Isotope Effect 22
2.9 Spline Interpolation 23
2.10 Rydberg-Klein-Rees potential curve 24
2.11 Avoided crossing rule 25
CHAPTER 3 REANALYSIS of NaH D1+ STATE 27
3.1 Recalibration of the signals 27
3.1.1 Recalibration of A1+ intermediate state 28
3.1.2 Recalibration of probing laser 30
3.2 The additional signals added 31
3.2.1 Examination of the additional signals 33
3.2.2 Determination of the energy barrier 35
3.3 The potential energy curve 39
3.3.1 The theoretical ab initio potential energy curve 39
3.3.2 Deformed ab initio energy curve 46
3.3.3 The hybrid potential energy curve 56
3.4 Determination of the dissociation energy 67
3.5 The above-dissociation signals 71
3.6 Conclusion 76
CHAPTER 4 REANALYSIS of NaD C1+ STATE 77
4.1 Recalibration of the intermediate NaD A1+ state 77
4.2 Determination of the double-well region 78
4.3 The potential energy curve of the NaD C1+ state 80
4.3.1 Isotope shift of the NaH C1+ state 80
4.3.2 RKR potential energy curve 81
4.3.3 The hybrid potential energy curve 84
4.4 Determination of the dissociation energy 87
4.5 Conclusion 92
REFERENCES 93
APPENDICES 98
APPENDIX A 98
APPENDIX B 139
參考文獻 1. Sansonetti, J. E., Wavelengths, Transition Probabilities,
and Energy Levels for the Spectra of Sodium (NaI–NaXI). J.
Phys. Chem. Ref. Data 2008, 37 (4), 1659-1763
2. Heger, M. L., Stationary Sodium Lines in Spectroscopic
Binaries Publ. Astron. Soc. Pac. 1919, 31 (184), 304-305.
3. Herzberg, G., Molecular Spectra and Molecular Structure.
In Spectra of Diatomic Molecules Robert E. Krieger
Publishing Co. : Malabar, Florida, 1989; Vol. 1.
4. Aymar, M.; Deiglmayr, J.; Dulieu, O., Systematic Trends in
Electronic Properties of Alkali Hydrides. Can. J. Phys.
2009, 87 (5), 543-556.
5. Hori, T., Das Absorptionsspektrum des Natriumhydrid. Z.
Phys. 1930, 62, 352-367.
6. Hori, T., Das Emissionsspektrum des Natriumhydrids. Z.
Phys. 1931, 71, 478-531.
7. Olson, E., Das Absorptionsspektrum des NaD. Z. Phys.
1934, 93, 206-219.
8. Pankhurst, R. C., Band Spectrum of Sodium Hydride.
Nature 1941, 147, 643.
9. Pankhurst, R. C., The Emission Spectrum of Sodium
Hydride. Proc. Phys. Soc. Lond. 1949, 62A, 191.
10. Orth, F. B.; Stwalley, W. C.; Yang, S. C.; Hsieh, Y. K., New
Spectroscopic Analyses and Potential Energy Curves for
the X1S+ and A1S+ States of NaH. J. Mol. Spectrosc.
1980, 79 (2), 314-322.
11. Sastry, K. V. L. N.; Eric, H.; Frank, C. D. L., The Millimeter
Wave Spectra of NaH and NaD. J Chem Phys 1981, 75 (10),
4753-4757.
12. Sastry, K. V. L. N.; Herbst, E.; Lucia, F. C. D., Laboratory
Millimeter and Submillimeter Spectrum of CCH. The
Astrophysical Journal 1981, 248, L53.
13. Leopold, K. R.; Zink, L. R.; Evenson, K. M.; Jennings, D.
A., Far-Infrared Spectrum of Sodium Hydride1. J. Mol.
Spectrosc. 1987, 122, 150-156.
14. Maki, A. G.; Olson, W. B., Infrared Spectrum of Sodium
Hydride. J. Chem. Phys. 1989, 90 (12), 6887-6892.
15. Dagdigian, P. J., Detection of LiH and NaH Molecular
Beams by laser Fluorescence and Measurement of
Radiative Lifetimes of the A1Σ+ state. J. Chem. Phys. 1976,
64 (6), 2609.
16. Baltayan, P.; Jourand, A.; Nedelec, O., Radiative Lifetime
of NaH A1Σ+ in a High Frequency Discharge. Phys. Lett.
1976, 58A (7), 443-445.
17. Nedelec, O.; Giroud, M., NaH: Studies of the X1Σ+ State
Near Dissociation and of the Radiative Lifetimes and
Collision Cross Sections of the A1Σ+ State. J. Chem. Phys.
1983, 79 (5), 2121-2125.
18. Leopold, K. R.; Zink, L. R.; Evenson, K. M.; Jennings, D.
A., Far-infrared spectrum of sodium hydride. J. Mol.
Spectrosc. 1987, 122 (1), 150-156.
19. Magg, U.; Jones, H., The Ground-state Infrared Spectrum
of Sodium Hydride. Chem. Phys. Lett. 1988, 146 (5), 415-
418.
20. Stwalley, W. C.; Zemke, W. T.; Yang, S. C., Spectroscopy
and Structure of the Lithium Hydride Diatomic Molecules
and Ions. J. Phys. Chem. Ref. Data. 1991, 20 (1), 153-187.
21. Rafi, M.; Ali, N.; Ahmad, K.; Khan, I. A.; Baig, M. A.; Iqbal,
Z., Near-dissociation photoabsorption spectra of LiH, NaH
and KH J. Phys. B: At. Mol. Opt. 1993, 26 (6), L129.
22. Lochbrunner, S.; Motzkus, M.; Pichler, G.; Kompa, K. L.;
Hering, P., New Dunham Coefficients of the A1S+-State of
NaH and NaD. Z. Phys. D 1996, 38 (1).
23. Bahns, J. T.; Tsai, C. C.; Ji, B.; Kim, J. T.; Zhao, G.;
Stwalley, W. C.; Bloch, J. C.; Field, R. W., Laser
Frequency-Modulated Spectroscopy of a Laser-Guided
Plasma in Sodium Vapor:. Line Positions for NaH (A1S+ -
X1S+), Na (9-13d and 11-14s), and Ar (5p-4s). J. Mol.
Spectrosc. 1997, 186 (2), 222-229.
24. Pesl, F. P.; Lutz, S.; Bergmann, K., Improved molecular
constants for the X1S+ and A1S+ states of NaH. Eur. Phys.
J D 2000, 10 (2), 247-257.
25. Huang, H. Y. Laser Spectroscopy of the X, A and C1S+
States in NaH Molecule. Ph.D. Thesis, National Cheng
Kung University, Taiwan, 2010.
26. Walji, S. D.; Sentjens, K. M.; Roy, R. J. L., Dissociation
Energies and Potential Energy Functions for the Ground
X1S+ and "Avoided-crossing" A1S+ States of NaH. J.
Chem. Phys. 2015, 142 (4), 044305.
27. Chu, C. C. Laser Spectroscopy Studies of NaH and NaD
Molecules. Ph. D. Thesis, National Cheng Kung University,
Taiwan, 2018.
28. Dickinson, A. S.; Poteau, R.; Gadea, F. X., An Ab Initio
Study of Mutual Neutralization in Na+ + H− Collisions. J.
Phys. B: At. Mol. Opt. Phys. 1999, 32 (23).
29. Lee, H. S.; Lee, Y. S.; Jeung, G. H., Singlet and Triplet S+
Excited States of NaH and KH: Undulating Potential Energy
Curves. Chemical Physics Letters 2000, 325, 7.
30. Leininger, T.; Gadea, F. X.; Dickinson, A. S., Broadening of
the Sodium 568.8, 589, 615.4 and 819.4 nm Lines by
Atomic Hydrogen. J. Phys. B: At. Mol. Opt. Phys. 2000, 33
(9), 1805-1817.
31. Huang, Y. L.; Luh, W. T.; Jeung, G. H.; Gade´a, F. X., The
D 1Σ+ State of 7LiH. J. Chem. Phys. 2000, 113 (2), 683-
689.
32. Yung, C. H. Optical-optical Double Resonance
Spetroscopy of the NaH D1S+ State. M.Sc.Thesis,
National Cheng Kung University, Taiwan, 2004.
33. Chiang, J. M. Spectroscopy Study of the NaH D1S+ Higher
Vibrational State Levels. M.Sc. Thesis, National Cheng
Kung University Taiwan, 2005.
34. Hsiao, Y. H. Spectroscopic Study of the NaH D1S+ State in
the Dissociation Limit and Double-well Potential M.Sc.
Thesis, National Cheng Kung University, Taiwan, 2007.
35. Boutalib, A.; Gadea, F. X., Ab initio Adiabatic and Aiabatic
Potential‐Energy Curves of the LiH Molecule. J. Chem.
Phys. 1992, 97 (2), 1144-1156.
36. Gemperle, F.; Gadea, F. X., Beyond Born–Oppenheimer
Spectroscopic Study for the Cstate of LiH. J. Chem. Phys.
1999, 110 (23), 11197-11205.
37. Lin, W. C.; Chen, J. J.; Luh, W. T., C1Σ+ State of 7LiH. J.
Phys. Chem. A 1997, 101 (36), 6709-6711.
38. Chen, J. J.; Luh, W. T.; Jeung, G. H., Spectroscopic Study
of the C 1Σ+ State of 7LiH. J. Chem. Phys. 1999, 110 (9),
4402-4409.
39. Hsu, S. K.; Wang, J. J.; Yu, P.; Wu, C. Y.; Luh, W. T.,
Spectroscopic Study of the C 1Σ+ State of 6LiH and 7LiD.
J. Phys. Chem. A 2002, 106 (26), 6279-6285.
40. Bouloufa, N.; Cabaret, L.; Luc, P.; Vetter, R.; Luh, W. T.,
An Optical-optical Double Resonance Experiment in LiH
Molecules: Lifetime Measurements in the C State. J.
Chem. Phys. 2004, 121 (15), 7237-7242.
41. Huang, H. Y.; Chang, Y. Y.; Liao, M. H.; Wu, K. L.; Lu, T.
L.; Chang, Y. Y.; Tsai, C. C.; Whang, T. J.,
Characterization of the Outer Well of NaH C1S+ State by
Fluorensce Depletion Spectroscopy. Chem. Phys. Lett.
2010, 493 (1-3), 53-56.
42. Chang, Y. Y. Optical-optical Double Resonance of the NaH
C1S+ State. M.Sc. Thesis, National Cheng Kung University,
Taiwan, 2000.
43. Liao, M. H. Absolute Vibrational Numbering of the NaH
C1S+ State. M.Sc. Thesis, National Cheng Kung University,
Taiwan, 2001.
44. Wu, K. L. Spectroscopy Study of the NaH C1S+ Higher and
Lower Vibrational State Levels. M.Sc. Thesis, National
Cheng Kung University, Taiwan, 2002.
45. Lu, T. L. SEP of the NaH X1S+ state and OODR of the
Intriguing Double-well C1S+ State. M.Sc. Thesis, National
Cheng Kung University, Taiwan, 2003.
46. Chu, C. C.; Huang, H. Y.; Whang, T. J.; Tsai, C. C.,
Observation of Double-well Potential of NaH C 1S+ State:
Deriving the Dissociation Energy of Its Ground State. J.
Chem. Phys. 2018, 148 (11).
47. Lin, M. H. Study of the Gas Phase NaD C1S+ State by
OODR Depletion. M.Sc. Thesis, National Cheng Kung
University, Taiwan, 2013.
48. Huang, H.-Y.; Chang, Y.-Y.; Liao, M.-H.; Wu, K.-L.; Lu,
T.-L.; Chang, Y.-Y.; Tsai, C.-C.; Whang, T.-J.,
Characterization of the Outer Well of NaH C1S+ State by
Fluorescence Depletion Spectroscopy. Chem. Phys. Lett.
2010, 493 (1-3), 53-56.
49. Cheng, S. E. Spectroscopy Study of the C1S+ Higher
Vibrational Levels in Gaseous Sodium Deuteride
Molecules. M.Sc. Thesis, National Cheng Kung University,
Taiwan, 2014.
50. McQuarrie, D. A., Quantum Chemistry. University Science
Books: Mill Valley, CA, 1983.
51. Schrodinger, E., An Undulatory Theory of the Mechanics of
Atoms and Molecules. Phys. Rev. 1926, 28 (6), 1049-1070.
52. Born, M.; Oppenheimer, J. R., The Quantumtheory of
Molecules. Ann. Phys. 1927, 84, 457-484.
53. Akhmeteli, A., One Real Function nstead of the Dirac
Spinor Function. J. Math. Phys. 2011, 52 (8), 082303.
54. Franck, J., Elementary Processes of Photochemical
Reaction. Trans. Faraday Soc. 1926, 21, 536-542.
55. Condon, E., A Theory of Intensity Distribution in Band
Systems. Phys. Rev. 1926, 28 (6), 1182-1201.
56. Banwell, C. N.; McCash, E. M., Fundamentals of Molecular
Spectroscopy. Tata McGraw-Hill: New Delhi, 1995.
57. Dunham, J. L., The Energy Levels of a Rotating Vibrator.
Phys. Rev. 1932, 41 (6), 721-731.
58. Dunham, J. L., The Wentzel-Brillouin-Kramers Method of
Solving the Wave Equation. Phys. Rev. 1932, 41 (6), 713-
720.
59. Heb, W.; Schmidt, J. W., Positive Quartic, Monotone
Quintic C2-spline Interpolation in one and two dimensions.
J. Comput. Appl. Math. 1994, 55, 51-67.
60. Chandra, S.; Sharma, A. K.; Khan, Z. H., New Method for
the Evaluation of the RKR Potential-integrals for Diatomic
Molecules. Pramana 1996, 47 (1), 65-77.
61. Devaquet, A., Avoided Crossings in Photochemistry. Pure
Appl. Chem. 1975, 41 (4), 455-473.
62. Gerstenkorn, S.; Luc, P., Absolute Iodine (I2) Standards
Measured by means of Fourier Transform Spectroscopy.
Rev. Phys. Appl. 1979, 14, 791-794.
63. Zhu, X.; Nur, A. H.; Misra, P., Laser Optogalvanic
Wavelength Calibration with a Commercial Hollow Cathode
Iron-neon Discharge Lamp. J. Quant. Spectrosc. Radiat.
Transfer 1994, 52, 167-177.
64. Gerstenkorn, S.; Luc, P., Atlas du spectre d'absorption de
la molecule d'iode. CNRS, Paris.
65. Kasahara, S.; Kowalczyk, P.; Kabir, M. H.; Baba, M.,
Doppler-Free UV-Visible Optical–optical Double
Resonance Polarization Spectroscopy of the 21Su+ Double
Minimum State and the C1Pu State of Li2. J. Chem. Phys.
2000, 113 (15), 6227-6234.
66. Chu, C. C.; Huang, H. Y.; Lin, H. C.; Hsiao, Y. H.; Whang,
T. J.; Tsai, C. C., Observation of the Shallow 21P State of
NaH. J. Chem. Phys. 2019, 150 (2), 024303.
67. Kosman, W. M.; Hinze, J., Inverse Perturbation Analysis:
Improving the Accuracy of Potential Energy Curves. J. Mol.
Spectrosc. 1975, 56, 93-103.
68. Vidal, C. R.; Scheingraber, H., Determination of Diatomic
Molecular Constants Using An Inverted Perturbation
Approach. J. Mol. Spectrosc. 1977, 65, 46-64.
69. Proctor, T. R.; Stwalley, W. C., The Long‐range Interactions
of S‐state Alkali Atoms with Rare Gas and Hydrogen
Atoms. J. Chem. Phys. 1977, 66 (5), 2063-2073.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw