進階搜尋


下載電子全文  
系統識別號 U0026-1410201222492200
論文名稱(中文) [行動購票/通關]服務消費者使用意願之前置因素探討
論文名稱(英文) Exploring the Antecedents of Consumer’s Use Intention for the Mobile Ticketing Service Technology
校院名稱 成功大學
系所名稱(中) 國際經營管理研究所碩士在職專班
系所名稱(英) Institute of International Management (IIMBA--Master)(on the job class)
學年度 101
學期 1
出版年 101
研究生(中文) 林佩儒
研究生(英文) Pei-Ju Lin
學號 RA7994029
學位類別 碩士
語文別 英文
論文頁數 84頁
口試委員 口試委員-林豪傑
口試委員-鄭至甫
指導教授-陳永信
中文關鍵字 [行動購票/通關]服務技術  整合性科技接受模式(UTAUT)  違約成本  利益追求  驗證性因素分析(CFA)  結構方程式(SEM) 
英文關鍵字 Mobile ticketing service technology  UTAUT  EE (Effort expectancy)  FC (Facilitate condition)  CP (Cost penalty)  BS (Benefit sought)  BI (Behavioral intention)  CFA  SEM 
學科別分類
中文摘要 隨著大眾運輸系統科技進步及智慧型行動裝置蓬勃發展,行動上網、行動商務成了近年來電子商務中發展卓越的代表。其中,在國外已經行之有年的[行動購票/通關]服務,台灣高鐵於2011年10月28日開始實行[行動購票/通關]服務,推行至今僅約一年,本研究調查僅27%曾使用行動/通關服務,由此可見[行動購票/通關]服務具有很大的市場需求及成長潛力。
本研究以整合性科技接受模式為基礎,加入違約成本(CP)、利益追求(BS)因素,探討消費者對[行動購票/通關]服務之努力期望(EE)、配合條件(FC)、違約成本(CP)、利益追求(BS)對行為意圖(BI)的影響,並依序探討各構念之間相互影響關係。本研究進行消費者對台灣高鐵行動[通關/購票]服務科技進行問卷調查,蒐集了207份問卷,問卷對象為台灣的行動裝置使用者及大眾運輸系統使用者。
本研究使用驗證性因素分析及結構方程式來驗證消費者對[行動購票/通關]服務技術之違約成本、利益追求、努力期望、配合條件及行為意圖之關係,研究結果證實:
一、努力期望、利益追求對行為意圖皆有正向顯著影響關係,其中努力期及利益追求均直接影響使用意圖,利益追求亦具中介增強角色。
二、配合條件部分正向影響使用意圖。
三、違約成本不支持負向影響使用意圖。
英文摘要 This study explored the relationships among effort expectancy (EE), facilitating condition (FC), cost penalty (CP), benefit sought (BS), and behavioral intention (BI) in Taiwan mobile ticketing market. This study surveyed and collected 207 answers from mobile users and commuters in Taiwan. The research results based on these answers showed that three hypotheses were well-supported with providing very specific evidences for this study. The findings indicated that customers would love to adopt the mobile ticketing service technology once they perceived the technology is easy, useful, not cost too much effort, controllable and not complicated. Additionally, the link from benefits sought to behavioral intention is found to be significantly supported.
Furthermore, this study clarified that the benefit sought toward individual based on the benefits of effort expectancy of the system, and their supporting, performance acting, and understanding to customers. Moreover, customers believe that the price of the mobile ticketing service technology is worth, comparable and affordable. Impressively, facilitating conditions have negative impact on behavioral intention. The explanation of this is because service was provided to customers almost during maintaining and repairing times, so the more of service received the worst of facilitating conditions.
論文目次 Abstract I
摘要 II
Acknowledgements III
Table of Contents IV
List of Tables VII
List of Figures IX
CHAPTER ONE INTRODUCTION 1
1.1 Research Background and Motivation. 1
1.2 Research Objectives and Intended Contributions. 4
1.3 Research Scope. 7
1.4 Research Procedures. 7
1.5 Research Structure. 7
CHAPTER TWO LITERATURE REVIEW 9
2.1 Theoretical Background. 9
2.2 Unified Theory of Acceptance and Use of Technology (UTAUT). 10
2.3 Mobile Ticketing. 15
2.4 Definition of Research Constructs. 18
2.4.1 Effort Expectancy (EE). 18
2.4.2 Facilitating Conditions (FC). 19
2.4.3 Cost Penalty (CP). 20
2.4.4 Benefits Sought (BS). 21
2.4.5 Behavioral Intention (BI). 23
2.5 Hypotheses Development. 23
2.5.1 The Relationship among Effort Expectancy (EE), Benefits Sought (BS), and Behavioral Intention (BI). 23
2.5.2 The Influence of Facilitating Conditions and Behavioral Intention. 26
2.5.3 The Influence of Cost Penalty on Behavioral Intention. 27
2.5.4 The Mediating effect of Benefit Sought between Effort Expectancy and Behavioral Intention. 28
CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 31
3.1 The Conceptual Framework. 31
3.2 The Construct Measurement Procedures. 32
3.2.1 Effort Expectancy (EE). 32
3.2.2 Facilitating Condition (FC). 33
3.2.3 Cost Penalty (CP). 34
3.2.4 Benefit Sought (BS). 34
3.2.5 Behavioral Intention (BI). 35
3.2.6 Information of Respondents. 36
3.3 The Hypothesis to Be Tested. 36
3.4 Questionnaire. 36
3.5 Sampling Plan. 37
3.6 The Data Analysis Procedure. 37
3.6.1 Descriptive Statistical Analyses. 37
3.6.2 Confirmatory Factor Analysis (CFA). 37
3.6.3 Structural Equation Modeling (SEM). 38
3.6.4 Path Analysis. 39
CHAPTER FOUR RESEARCH RESULTS 40
4.1 Descriptive Analysis. 40
4.1.1 Characteristics of Respondents. 40
4.1.2 Measurement Results of Research Variables. 42
4.2 Reliability Tests. 44
4.2.1. Cronbach’s Alpha. 45
4.3 Confirmatory Factor Analysis (CFA). 46
4.3.1 Convergent Validity. 47
4.3.2 Discriminant Validity. 57
4.4 Structural Equation Modeling. 59
4.4.1 Equal-fit Test (Anderson-Gerbing 2-step Test). 61
4.4.2 Path Analysis. 61
4.5 Mediating Effects. 63
CHAPTER FIVE CONCLUSION AND SUGGESTIONS 65
5.1 Research Conclusions. 65
5.2 Research Contributions and Discussions. 69
5.3 Managerial Implications. 70
5.4 Research Limitations and Future Research Suggestions. 71
References 73
APPENDICES 75
Appendix 1: Questionnaire. 75
Appendix 2: Inter-item Correlation Matrix 83
參考文獻 Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Baroudi, J. J., Olson, M. H., & Ives, B. (1986). An empirical study of the impact of user involvement on system usage and information satisfaction. Communications of the ACM, 29(3), 232-238.
Bodhani, A. (2011). Smartphones pay the price. Engineering & Technology, 6(10), 56-59.
Brown, S. A., Dennis, A. R., & Venkatesh, V. (2010). Predicting collaboration technology use: Integrating technology adoption and collaboration research. Journal of Management Information Systems, 27(2), 9-53.
Buellingen, F., & Woerter, M. (2004). Development perspectives, firm strategies and applications in mobile commerce. Journal of Business Research, 57(12), 1402-1408.
Çakmak, A. F., Benk, S., & Budak, T. (2011). The acceptance of tax office automation system (VEDOP) by employees: Factorial validation of Turkish adapted technology acceptance model (TAM). International Journal of Economics & Finance, 3(6), 107-116.
Dash, M., Mohanty, A. K., Pattnaik, S., Mohapatra, R. C., & Sahoo, D. S. (2011). Using the TAM model to explain how attitudes determine adoption of internet banking. European Journal of Economics, Finance & Administrative Sciences, August 2011(36), 50-59.
Datamonitor. (2012). New York and New Jersey transit systems tap into NFC ticketing [Electronic Version]. MarketWatch: Financial Services, 12, 5-6, from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=71792547&site=ehost-live
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Dekkers, J., & Rietveld, P. (2007). Electronic ticketing in public transport: A field study in a rural area. Intelligent Transportation Systems, 11(2), 69-78.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7 ed.). New Jersey: Prentice Hall.
Ives, B., & Olson, M. H. (1984). User involvement and MIS success: A review of research. Management Science, 30(5), 586-603.
Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2000). Switching barriers and repurchase intentions in services. Journal of Retailing, 76(2), 259-274.
Karaiskos, D., Kourouthanassis, P., & Giaglis, G. (2007). User acceptance of pervasive information systems: Evaluating an RFID ticketing system.
Kim, H.-W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly, 33(3), 567-582.
Kline, R. B. (2010). Principles and practice of structural equation modeling (3 ed.): New York: Guilford Press.
Kukar-Kinney, M., & Lan, X. I. A. (2011). Consumer response to penal ties in retail and service contexts. International Journal of Management Cases, 13(3), 287-289.
Lee, S., Noh, M.-J., & Kim, B. G. (2012). An integrated adoption model for mobile services. International Journal of Mobile Communications, 10(4), 405-426.
Leng, G. S., Lada, S., Muhammad, M. Z., Ibrahim, A. A. H. A., & Tamrin, A. (2011). An exploration of social networking sites (SNS) adoption in Malaysia using technology acceptance model (TAM), theory of planned behavior (TPB) and intrinsic motivation. Journal of Internet Banking & Commerce, 16(2), 1-27.
Li, T., Heck, E. v., & Vervest, P. (2009). Information capability and value creation strategy: Advancing revenue management through mobile ticketing technologies. European Journal of Information Systems, 18(1), 38-51.
McDonald, A. B. (2011, March2011). Can a phone become your digital wallet? PC World, 29, 22-22.
Papadimitriou, D., & Gibson, H. (2008). Benefits sought and realized by active mountain sport tourists in Epirus, Greece: Pre- and post-trip analysis. Journal of Sport & Tourism, 13(1), 37-60.
Qiu, L., & Li, D. (2008). Applying TAM in B2C e-commerce research: An extended model. Tsinghua Science and Technology, 13(3), 265-272.
Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240.
Shang, R.-A., Chen, Y.-C., & Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & Management, 42(3), 401-413.
Thomas, S. (2011). Addiction in internet chatting: An empirical study using modified technology acceptance model. Interdisciplinary Journal of Contemporary Research in Business, 3(4), 287-298.
Thompson, R. L., & Higgins, C. A. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Davis, F. D., & Morris, M. G. (2007). Dead or alive? The development, trajectory and future of technology adoption research. Journal of the Association for Information Systems, 8(4), 268-286.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a UNIFIED view. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Thong, J. Y. L., & Xin, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information & Management, 41(6), 747-762.
Wang, C.-H., Liu, W.-L., Tseng, M.-C., & Tsai, H.-S. (2010). A study of Taiwanese college teachers' acceptance of distance learning. International Journal of Organizational Innovation, 3(2), 243-260.
Wu, I. L., & Chen, J. L. (2005). An extension of trust and TAM model with TPB in the initial adoption of on-line tax: An empirical study. International Journal of Human-Computer Studies, 62(6), 784-808.
Yang, H., & Zhou, L. (2011). Extending TPB and TAM to mobile viral marketing: An exploratory study on American young consumers' mobile viral marketing attitude, intent and behavior. Journal of Targeting, Measurement & Analysis for Marketing, 19(2), 85-98.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw