進階搜尋


 
系統識別號 U0026-1409201709314900
論文名稱(中文) 食果動物覓食行為與榕屬植物結實策略之生態交互作用
論文名稱(英文) The ecological interaction between foraging behavior of frugivores and the fruiting strategies of fig
校院名稱 成功大學
系所名稱(中) 生命科學系
系所名稱(英) Department of Life Sciences
學年度 105
學期 2
出版年 106
研究生(中文) 吳佳玲
研究生(英文) Chia-Ling Wu
學號 L56014120
學位類別 碩士
語文別 英文
論文頁數 80頁
口試委員 指導教授-李亞夫
口試委員-劉雅心
口試委員-李純純
中文關鍵字 榕屬植物  食果動物  覓食行為  結實量  種子傳播 
英文關鍵字 Ficus  frugivores  foraging behaviors  crop size  seed dispersal 
學科別分類
中文摘要 種子傳播 (seed dispersal) 對於植物族群的基因交流 (gene flow),以及維持族群結構而言非常重要。許多肉果植物 (fleshy-fruited plant) 會耗費能量製造果肉 (fleshy) 或假種皮 (arillate),以吸引具有種子傳播效益 (effectiveness of seed dispersal) 的食果動物 (frugivores) 前來取食,建立起肉果植物和食果動物之間的互利關係。 多數亞熱帶和熱帶雨林中,超過70%的植物種類帶有肉質果實,其中榕屬植物 (Ficus spp.) 終年都可結實,加上結實量 (crop size) 龐大的特性,使榕果為熱帶森林中重要的關鍵資源 (keystone resources)。 然而,食果動物是否在覓食場所停留,仍受到非常多因素影響,例如:食物資源的營養價值、果實大小、鳥類本身形質、食性差異、飢餓程度、競爭者、被捕食風險,甚至是植株高度,都可能成為食果鳥考量的因素。 許多研究發現,果樹的結實量愈大,食果鳥的造訪率 (visitation rate) 愈高,種子移除率 (seed removal rate) 也愈高,支持結實量假說 (crop size hypothesis)。 本研究以直接觀察法 (direct observations) 紀錄食果鳥在榕屬植物上的覓食行為,並搭配種子收集器 (seed traps) 調查落果數量,欲探討雌雄異株母株和雌雄同株兩大類群的榕屬植物,其結實量、結實策略、以及果實大小的差異,是否對食果鳥的群集 (assemblages) 和覓食策略有所影響,並瞭解在不同生物因子的交互作用之下,食果動物如何利用及選擇資源。 整合各項因子後,不只有助於釐清食果動物和榕屬植物之間的互動,未來更可以進一步探討食果鳥如何藉由傳播榕樹種子,間接影響森林的更生和植物群集結構。
英文摘要 Seed dispersal is very important for the gene flow of plant populations and for maintaining the population structure. Many fleshy-fruited plants cost energy to make fleshy or juicy arillate, attracting effective seed dispersal frugivores arrive, establish the mutualism relationship between the fleshy-fruit and frugivores. In most of the subtropical and tropical rainforests, more than 70% of the plant species bearing fleshy fruit. Ficus spp. can produce large amount of figs throughout the year, make them the keystone resources of the tropical forest. Many studies have found that the greater the crop size of the plant, the higher the visitation rate and seed removal rate of frugivores, which support the fruit crop size hypothesis. However, the fruit selection and visit duration of animals are affected by a number of factors, such as the plant traits: nutritional value, color, and size of fruit and seed; Even by the traits or conditions of the birds themselves, like sexuality, degree of hunger, the presence of competitor and predators. In this study, direct observation method was used to record the feeding behavior of the frugivores and the figs number in four Ficus species. Also recorded the number of fruit dropping under the trees with seed traps. I want to investigated the relationship between foraging strategies of frugivores and the fruiting strategies of Ficus species in Hengchun Tropical Botanical Garden, discuss the influence of crop size and crop density on foraging performance, including foraging group size and the feeding rate of frugivores. And to understand the how frugivores exploit resource under the interaction of different factors. The integration of the factors not only helps to clarify the interaction between frugivores and figs, but also let us explore the frugivores’ indirectly impact on the regeneration of the forest and the community structure of plants in future explores.
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Table of contents iv
List of tables vi
List of figures vii
Introduction 1
1. Statement of the problem 1
2. Literature review 1
(1) The relationship between fleshy-fruited plants and frugivores 1
(2) Fruiting strategies of plants 3
(3) Foraging behavior of frugivores 6
(4) The importance of Ficus 10
3. Hypotheses and predictions 11
Fruiting strategies of figs and the figs use patterns of frugivores 11
The relationship between the crop size, fruit density, and the foraging behaviors of frugivores 11
Seasonal changes of foraging patterns of resident species 12
Materials and Methods 12
1. Study area 12
2. Selection of target trees, focal observation targets and tree measurement 15
3. Fruit traps setting and fallen fruits checking 16
4. Foraging behavior and focal observation 17
5. Data analysis 17
(1) Fruiting strategies of figs and the figs use patterns of frugivores 18

(2) The relationship between the crop size, fruit density, and the foraging behaviors of frugivores 19
(3) Seasonal changes of foraging patterns of resident species 19
Results 19
1. Fruiting strategies of figs and the figs use patterns of frugivores 20
2. The relationships between the crop size, fruit density, and the foraging behaviors of frugivores 26
(1) Numerical response of avian and mammal 26
(2) Crop size and fruit removed of avian and mammal 35
(3) Functional response of avian and mammal 44
(4) Group size and feeding rate of avian and mammal 50
3. Seasonal changes of foraging patterns of resident species 55
Discussion 62
1. Fruiting strategies of figs and the figs use patterns of frugivores 62
2. The interaction between foraging behavior of frugivores and the fruiting crop of Ficus 64
(1) Numerical response of avian and mammal 64
(2) Crop size and fruit removed of avian and mammal 64
(3) Functional response of avian and mammal 65
(4) Group size and feeding rate of avian and mammal 65
3. Seasonal changes of foraging patterns of resident species 66
Literature cited 69
個人簡歷 80
參考文獻 Armesto, J. and R. Rozzi. 1989. Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest. Journal of Biogeography 16: 219-226.
Baack, J. K. and P. V. Switzer. 2000. Alarm calls affect foraging behavior in eastern chipmunks (Tamias striatus, Rodentia: Sciuridae). Ethology 106: 1057-1066.
Bascompte, J. and P. Jordano. 2007. Plant-Animal Mutualistic Networks: The Architecture of Biodiversity. Annual Review of Ecology, Evolution, and Systematics 38: 567-593.
Bascompte, J., et al. 2003. The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America 100: 9383-9387.
Beauchamp, G. 2007. Effect of Group Size on Feeding Rate when Patches are Exhaustible. Ethology 113: 57-61
Bednekoff, P. A. and A. I. Houston. 1994. Avian daily foraging patterns: effects of digestive constraints and variability. Evolutionary Ecology 8: 36-52.
Berg, C. 1989. Classification and distribution of Ficus. Experientia 45: 605-611.
Blake, J. G. and B. A. Loiselle. 1992. Fruits in the diets of Neotropical migrant birds in Costa Rica. Biotropica 24: 200-210.
Blendinger, P. G., et al. 2011. Composition and clumping of seeds deposited by frugivorous birds varies between forest microsites. Oikos 120: 463-471.
Blumstein, D. T., et al. 2004. Avian risk assessment: effects of perching height and detectability. Ethology 110: 273-285.
Bonter, D. N., et al. 2013. Daily foraging patterns in free-living birds: exploring the predation-starvation trade-off. Proceedings of the Royal Society B: Biological Sciences 280: 20123087.
Boyle, W. A., et al. 2011. Why do some, but not all, tropical birds migrate? A comparative study of diet breadth and fruit preference. Evolutionary Ecology 25: 219-236.
Bronstein, J. L. and K. Hoffmann. 1987. Spatial and temporal variation in frugivory at a neotropical fig, Ficus pertusa. Oikos: 261-268.
Carlo, T. A. and J. M. Morales. 2008. Inequalities in fruit-removal and seed dispersal: consequences of bird behaviour, neighbourhood density and landscape aggregation. Journal of Ecology 96: 609-618.
Chapman, C. A., et al. 1992. Estimators of fruit abundance of tropical trees. Biotropica 24: 527-531.
Clark, C. W. and M. Mangel. 1984. Foraging and flocking strategies: information in an uncertain environment. The American Naturalist 123: 626-641.
Davidar, P. and E. S. Morton. 1986. The relationship between fruit crop sizes and fruit removal rates by birds. Ecology 67: 262-265.
Debussche, M. and P. Isenmann. 1989. Fleshy fruit characters and the choices of bird and mammal seed dispersers in a Mediterranean region. Oikos 56: 327-338.
Debussche, M. and P. Isenmann. 1994. Bird-dispersed seed rain and seedling establishment in patchy Mediterranean vegetation. Oikos 69: 414-426.
Dietsch, T. V. 2003. Conservation and ecology of birds in coffee agroecosystems of Chiapas. University of Michigan, Mexico, USA.
Dowsett-Lemaire, F. 1988. Fruit choice and seed dissemination by birds and mammals in the evergreen forests of upland Malawi. Revue D'écologie 43: 251-286
Earley, R. and L. Dugatkin. 2010. Behavior in groups. Pages 295-307 in D. Westneat, and C. W. Fox, editors. Evolutionary behavioral ecology. Oxford University Press, UK.
Fink, R. D., et al. 2009. Patch size and tree species influence the number and duration of bird visits in forest restoration plots in southern Costa Rica. Restoration Ecology 17: 479-486.
Fischer, K. E. and C. A. Chapman. 1993. Frugivores and fruit syndromes: differences in patterns at the genus and species level. Oikos 66: 472-482.
Foster, M. S. 1987. Feeding methods and efficiencies of selected frugivorous birds. Condor 89: 566-580.
Foster, M. S. 1990. Factors influencing bird foraging preferences among conspecific fruit trees. Condor 92: 844-854.
Foster, W. and J. Treherne. 1981. Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293: 466-467.
Fragaszy, D., et al. 1992. Behavioral sampling in the field: comparison of individual and group sampling methods. American Journal of Primatology 26: 259-275.
Fuentes, M. 1994. Diets of fruit-eating birds: what are the causes of interspecific differences? Oecologia 97: 134-142.
Galetti, M., et al. 2011. Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotropica 11: 181-193.
Galil, J. and D. Eisikowitch. 1968. On the pollination ecology of Ficus sycomorus in East Africa. Ecology 49: 259-269.
Gautier-Hion, A., et al. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65: 324-337.
Gosper, C. R., et al. 2005. Seed dispersal of fleshy-fruited invasive plants by birds: contributing factors and management options. Diversity and Distributions 11: 549-558.
Grant, P. R. and B. R. Grant. 2002. Unpredictable evolution in a 30-year study of Darwin's finches. science 296: 707-711.
Gross, J. E., et al. 1993. Functional response of herbivores in food‐concentrated patches: tests of a mechanistic model. Ecology 74: 778-791.
Harms, K. E., et al. 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404: 493.
Harper, J. L. 1977. Population biology of plants. Academic Press, London, UK.
Herrera, C. M. 1982. Seasonal variation in the quality of fruits and diffuse coevolution between plants and avian dispersers. Ecology 63: 773-785.
Herrera, C. M. 1984. A study of avian frugivores, bird‐dispersed plants, and their interaction in Mediterranean scrublands. Ecological monographs 54: 1-23.
Herrera, C. M. and P. Jordano. 1981. Prunus mahaleb and Birds: The High‐Efficiency Seed Dispersal System of a Temperate Fruiting Tree. Ecological monographs 51: 203-218.
Hespenheide, H.A. 1980. Bird community structure in two Panama forests: residents, migrants, and seasonality during the non-breeding season. Page 227-237 in A. Keast, and E.S. Morton, editors. Migrant Birds in the Neotropics: Ecology, Behavior, Distribution, and Conservation. Smithsonian Institution Press, Washington, USA.
Holland, J. N., et al. 2002. Population dynamics and mutualism: functional responses of benefits and costs. The American Naturalist 159: 231-244.
Holling, C. S. 1959. The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly. The Canadian Entomologist 91: 293-320.
Howe, H. F. 1977. Bird activity and seed dispersal of a tropical wet forest tree. Ecology 58: 539-550.

Howe, H. F. 1984. Constraints on the evolution of mutualisms. The American Naturalist 123: 764-777.
Howe, H. F. and G. F. Estabrook. 1977. On intraspecific competition for avian dispersers in tropical trees. American Naturalist 111: 817-832.
Howe, H. F. and J. Smallwood. 1982. Ecology of seed dispersal. Annual review of ecology and systematics 13: 201-228.
Inman, A. J. and J. Krebs. 1987. Predation and group living. Trends in Ecology & Evolution 2: 31-32.
Izhaki, I. 2002. The role of fruit traits in determinin fruit removal in East Mediterranean ecosystem. Pages 161-175 in D. J. Levey, W. R. Silva, and M. Galetti, editors.
Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CABI, London, UK.
Jacob Solomon Raju, A. 2005. Passerine bird pollination and seed dispersal in Woodfordia floribunda Salisb.(Lythraceae), a common low altitude woody shrub in the Eastern Ghats forests of India. Ornithological Science 4: 103-108.
Jansen, P., et al. 2014. Negative density dependence of seed dispersal and seedling recruitment in a neotropical palm. Ecology letters 17: 1111-1120.
Janson, C. H. 1983. Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science(Washington) 219: 187-189.
Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist 104: 501-528.
Janzen, D. H. 1980. When is it coevolution. Evolution 34: 611-612.
Jedlicka, J. A., et al. 2006. Seasonal shift in the foraging niche of a tropical avian resident: resource competition at work? Journal of Tropical Ecology 22: 385-395.
Jordano, P. 1983. Fig-seed predation and dispersal by birds. Biotropica 15: 38-41.
Jordano, P. 1987. Frugivory, external morphology and digestive system in Mediterranean sylviid warblers Sylvia spp. Ibis 129: 175-189.
Jordano, P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129: 657-677.
Jordano, P. 1995. Frugivore‐Mediated Selection on Fruit and Seed Size: Birds and St. Lucie's Cherry, Prunus Mahaleb. Ecology 76: 2627-2639.
Kalinkat, G., et al. 2013. Body masses, functional responses and predator–prey stability. Ecology letters 16: 1126-1134.
Kantak, G. E. 1979. Observations on some fruit-eating birds in Mexico. The Auk 96: 183-186.
Khan, S. I. and M. F. Ahsan. 2016. Frugivorous Birds and Fruit Plants in a Deciduous Forest in Bangladesh: A Case Study in the Madhupur National Park. Bangladesh Journal of Zoology 43: 173-187.
Kitamura, S., et al. 2002. Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand. Oecologia 133: 559-572.
Korine, C., et al. 2000. Fruit characteristics and factors affecting fruit removal in a Panamanian community of strangler figs. Oecologia 123: 560-568.
Krebs, J. R. 1973. Social learning and the significance of mixed-species flocks of chickadees (Parus spp.). Canadian Journal of Zoology 51: 1275-1288.
Krebs, J. R. 1980. Optimal foraging, predation risk and territory defence. Ardea 68: 83-90.
Laman, T. G. 1996. Ficus seed shadows in a Bornean rain forest. Oecologia 107: 347-355.
Laska, M. S. and E. W. Stiles. 1994. Effects of fruit crop size on intensity of fruit removal in Viburnum prunifolium (Caprifoliaceae). Oikos 69: 199-202.
Lasky, J. R. and T. H. Keitt. 2012. The effect of spatial structure of pasture tree cover on avian frugivores in Eastern Amazonia. Biotropica 44: 489-497.
Lee, Y.-F., et al. 2008. Spatiotemporal variation in avian diversity and the short-term effects of typhoons in tropical reef-karst forests on Taiwan. Zoological science 25: 593-603.
Leighton, M. and D. R. Leighton. 1982. The relationship of size of feeding aggregate to size of food patch: howler monkeys (Alouatta palliata) feeding in Trichilia cipo fruit trees on Barro Colorado Island. Biotropica 14: 81-90.
Levey, D. J. 1987. Seed size and fruit-handling techniques of avian frugivores. The American Naturalist 129: 471-485.
Lima, S. L. 1995. Collective detection of predatory attack by social foragers: fraught with ambiguity? Animal Behaviour 50: 1097-1108.
Lima, S. L., et al. 1985. Foraging-efficiency-predation-risk trade-off in the grey squirrel. Animal Behaviour 33: 155-165.
Lind, J., et al. 2005. Information, predation risk and foraging decisions during mobbing in Great Tits Parus major. Ornis Fennica 82: 89-96.
Lomáscolo, S. B., et al. 2010. Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences 107: 14668-14672.
Lord, J. M. 2004. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecology 29: 430-436.
Martínez, I., et al. 2008. Differential seed dispersal patterns generated by a common assemblage of vertebrate frugivores in three fleshy-fruited trees. Ecoscience 15: 189-199.
Martin, T. E. 1985. Selection of second-growth woodlands by frugivorous migrating birds in Panama: an effect of fruit size and plant density? Journal of Tropical Ecology 1: 157-170.
Mazer, S. J. and N. T. Wheelwright. 1993. Fruit size and shape: allometry at different taxonomic levels in bird-dispersed plants. Evolutionary Ecology 7: 556-575.
McKey, D. 1975. The ecology of coevolved seed dispersal systems. Pages 159-191 in L. E. Gilbert and P. H. Raven, editors. Coevolution of animals and plants. University of Texas Press, Austin, USA.
Milton, K., et al. 1982. Fruiting phenologies of two neotropical Ficus species. Ecology 63: 752-762.
Moermond, T. C. and J. S. Denslow. 1985. Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithological Monographs 36: 865-897.
Mokotjomela, T. M., et al. 2013. Potential seed dispersal distances of native and non-native fleshy fruiting shrubs in the South African Mediterranean climate region. Plant Ecology 214: 1127-1137.
Morales, J. M., et al. 2012. Neighborhood effects on seed dispersal by frugivores: testing theory with a mistletoe–marsupial system in Patagonia. Ecology 93: 741-748.
Morganti, M., et al. 2017. How residents behave: home range flexibility and dominance over migrants in a Mediterranean passerine. Animal Behaviour 123: 293-304.
Murray, K. G. 1987. Selection for optimal fruit-crop size in bird-dispersed plants. American Naturalist 129: 18-31.
Neill, S. and J. M. Cullen. 1974. Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators. Journal of Zoology 172: 549-569.
Ortiz‐Pulido, R. and V. Rico‐Gray. 2000. The effect of spatio‐temporal variation in understanding the fruit crop size hypothesis. Oikos 91: 523-527.
Pizo, M. A. 2002. The seed dispersers and fruit syndromes of Myrtaceae in the Brazilian Atlantic forest. Pages 129-143 In D. J. Levey, W. R. Silva, and M. Galetti, editors.
Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CABI, London, UK.
Poulin, B. and G. Lefebvre. 1996. Dietary relationships of migrant and resident birds from a humid forest in central Panama. The Auk 113: 277-287.
Pratt, T. K. and E. W. Stiles. 1983. How long fruit-eating birds stay in the plants where they feed: implications for seed dispersal. The American Naturalist 122: 797-805.
Pratt, T. K. and E. W. Stiles. 1985. The influence of fruit size and structure on composition of frugivore assemblages in New Guinea. Biotropica 17: 314-321.
Ratiarison, S. and P.-M. Forget. 2013. The role of frugivores in determining seed removal and dispersal in the Neotropical nutmeg. Tropical Conservation Science 6: 690-704.
Razali, N. M. and Y. B. Wah. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics 2: 21-33.
Readshaw, J. 1973. Numerical response of predators to prey density. Journal of Applied Ecology 10: 342-351
Rey, P., et al. 1997. Fruit size in wild olives: implications for avian seed dispersal. Functional Ecology 11: 611-618.
Rohner, C. 1995. Great horned owls and snowshoe hares: what causes the time lag in the numerical response of predators to cyclic prey? Oikos 74: 61-68.
Russo, S. E. 2003. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): implications for selection. Oecologia 136: 80-87.
Sallabanks, R. 1993. Hierarchical mechanisms of fruit selection by an avian frugivore. Ecology 74: 1326-1336.
Sanitjan, S. and J. Chen. 2009. Habitat and fig characteristics influence the bird assemblage and network properties of fig trees from Xishuangbanna, South-West China. Journal of Tropical Ecology 25: 161-170.
Sankamethawee, W., et al. 2011. Plant-frugivore interactions in an intact tropical forest in north-east Thailand. Integrative Zoology 6: 195-212.
Saracco, J. F., et al. 2005. Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni trees in Puerto Rico. Biotropica 37: 81-87.
Sargent, S. 1990. Neighborhood effects on fruit removal by birds: a field experiment with Viburnum dentatum (Caprifoliaceae). Ecology 71: 1289-1298.
Schaefer, H. M. and V. Schaefer. 2006. The fruits of selectivity: how birds forage on Goupia glabra fruits of different ripeness. Journal of Ornithology 147: 638-643.
Schupp, E. W. 1993. Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107: 15-29.
Shanahan, M. and S. G. Compton. 2001. Vertical stratification of figs and fig-eaters in a Bornean lowland rain forest: how is the canopy different? Pages 121-132 in K. E. Linsenmair, editor. Tropical Forest Canopies: Ecology and Management. Springer Science & Business Media, Berlin, Germany.
Shanahan, M., et al. 2001. Fig-eating by vertebrate frugivores: a global review. Biological Reviews 76: 529-572.
Smart, S. L., et al. 2008. Measuring the functional responses of farmland birds: an example for a declining seed‐feeding bunting. Journal of Animal Ecology 77: 687-695.
Snow, D. W. 1971. Evolutionary aspects of fruit‐eating by birds. Ibis 113: 194-202.
Solomon, M. 1949. The natural control of animal populations. The Journal of Animal Ecology 18: 1-35.
Sridhar, H., et al. 2009. Why do birds participate in mixed-species foraging flocks? A large-scale synthesis. Animal Behaviour 78: 337-347.
Stapanian, M. A. 1982. Evolution of fruiting strategies among fleshy‐fruited plant species of eastern Kansas. Ecology 63: 1422-1431.
Stephens, P. A., et al. 2003. Predicting the response of farmland bird populations to changing food supplies. Journal of Applied Ecology 40: 970-983.
Stevenson, P. R. and I. N. Vargas. 2008. Sample size and appropriate design of fruit and seed traps in tropical forests. Journal of Tropical Ecology 24: 95-105.
Stiles, E. W. 1980. Patterns of fruit presentation and seed dispersal in bird-disseminated woody plants in the eastern deciduous forest. The American Naturalist 116: 670-688.
Stillman, R. and V. Simmons. 2006. Predicting the functional response of a farmland bird. Functional Ecology 20: 723-730.

Tamboia, T., et al. 1996. An evaluation of vertebrate seed dispersal syndromes in four species of black nightshade (Solanum sect. Solanum). Oecologia 107: 522-532.
Tellería, J. L., et al. 2013. Migratory and resident Blackcaps Sylvia atricapilla wintering in southern Spain show no resource partitioning. Ibis 155: 750-761.
Terborgh, J. and J. M. Diamond. 1970. Niche overlap in feeding assemblages of New Guinea birds. The Wilson Bulletin 82: 29-52.
Terborgh, J., et al. 2008. Tree recruitment in an empty forest. Ecology 89: 1757-1768.
Thompson, J. N. and M. F. Willson. 1979. Evolution of temperate fruit/bird interactions: phenological strategies. Evolution 33: 973-982.
Valone, T. J. and J. J. Templeton. 2002. Public information for the assessment of quality: a widespread social phenomenon. Philosophical Transactions of the Royal Society of London B: Biological Sciences 357: 1549-1557.
Van Bael, S. A., et al. 2003. Birds defend trees from herbivores in a Neotropical forest canopy. Proceedings of the National Academy of Sciences 100: 8304-8307.
Van der Pijl, L. 1982. Principles of dispersal. Springer, Berlin, Germany.
Vanderhoff, E. N. and B. Grafton. 2009. Behavior of tamarins, tanagers and manakins foraging in a strangler fig (Ficus sp.) in Suriname, South America: implications for seed dispersal. Biota Neotropica 9: 419-423.
Wästljung, U. 1989. Effects of crop size and stand size on seed removal by vertebrates in hazel Corylus avellana. Oikos 54: 178-184.
Waite, T. A. and K. L. Field. 2007. Foraging with others: games social foragers play. Pages 331-362 in D. W. Stephens, J. S. Brown, and R. C. Ydenberg, editors. Foraging: Behavior and ecology: University of Chicago Press. USA
Wang, B. C. and T. B. Smith. 2002. Closing the seed dispersal loop. Trends in Ecology & Evolution 17: 379-386.
Wauters, L. A., et al. 2001. Does interspecific competition with introduced grey squirrels affect foraging and food choice of Eurasian red squirrels? Animal Behaviour 61: 1079-1091.
Wauters, L. A., et al. 2002. Interspecific competition between native Eurasian red squirrels and alien grey squirrels: does resource partitioning occur? Behavioral Ecology and Sociobiology 52: 332-341.
Weiblen, G. D., et al. 2010. Nutritional dimorphism in New Guinea dioecious figs. Biotropica 42: 656-663.
Wenny, D. G. 2000. Seed dispersal, seed predation, and seedling recruitment of a neotropical montane tree. Ecological monographs 70: 331-351.
Wenny, D. G. and D. J. Levey. 1998. Directed seed dispersal by bellbirds in a tropical cloud forest. Proceedings of the National Academy of Sciences 95: 6204-6207.
Wheelwright, N. T. 1985. Fruit‐size, gape width, and the diets of fruit‐eating birds. Ecology 66: 808-818.
Wheelwright, N. T., et al. 1984. Tropical fruit-eating birds and their food plants: a survey of a Costa Rican lower montane forest. Biotropica 16: 173-192.
Wheelwright, N. T. and C. H. Janson. 1985. Colors of fruit displays of bird-dispersed plants in two tropical forests. The American Naturalist 126: 777-799.
Wheelwright, N. T. and G. H. Orians. 1982. Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. The American Naturalist 119: 402-413.
Whelan, C. J. and M. F. Willson. 1994. Fruit choice in migrating North American birds: field and aviary experiments. Oikos 71: 137-151.
Wills, C., et al. 1997. Strong density-and diversity-related effects help to maintain tree species diversity in a neotropical forest. Proceedings of the National Academy of Sciences 94: 1252-1257.
Willson, M. F., et al. 1989. Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica 21: 133-147.
Wilson, A.-L. and C. Downs. 2012. Fruit nutritional composition and non-nutritive traits of indigenous South African tree species. South African Journal of Botany 78: 30-36.
Wunderle, J. M. 1997. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology and Management 99: 223-235.
Zar, J. H. 2010. Biostatistical analysis, fifth edition. Pearson Prentice Hall, Upper Saddle River, New Jersey, USA.
中央氣象局。2013-2015。恆春氣象站30天觀測資料。取自http://www.cwb.gov.tw。
伍淑惠、潘清連、古心蘭、曾喜育、王相華。2007。墾丁高位珊瑚礁森林木質藤本多樣性。中華林學季刊 40:31-42。
宋馥珊。2006。墾丁高位珊瑚礁森林鳥類及哺乳動物對三種榕屬植物榕果之利用。國立東華大學自然資源管理研究所碩士論文。花蓮,臺灣。
林彥瑾。2017。恆春熱帶植物園內結果植物與食果動物之間的互動與關係。國立成功大學生命科學研究所碩士論文。臺南,臺灣。
林國銓、邱文良、施炳霖。1991。恆春熱帶植物園步道兩側植群及土壤的受害調查。林業試驗所研究報告季刊 6: 357-365。
張心怡。2010。五色鳥食物資源利用及其對種子傳播的影響。國立成功大學生物多樣性研究所碩士論文。臺南,臺灣。
曾喜育。2004。臺灣產榕屬植物分類之研究。國立中興大學森林學系研究所博士論文。臺中,臺灣。
黃鈺婷。2015。榕果功能性性狀之種間及種內差異及其生態關聯。國立成功大學生命科學研究所碩士論文。臺南,臺灣。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw