進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408202019481100
論文名稱(中文) 以積層製造技術進行三維機械超穎結構之設計與開發
論文名稱(英文) Development of 3D Mechanical Metamaterials Using Additive Manufacturing Techniques
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 吳姿儀
研究生(英文) Tzu-I Wu
學號 N56074106
學位類別 碩士
語文別 中文
論文頁數 115頁
口試委員 指導教授-劉浩志
口試委員-李旺龍
口試委員-徐邦昱
口試委員-劉俊彥
口試委員-林建宏
中文關鍵字 積層製造  熱熔融沉積成型技術  蜂巢結構  超穎材料  拉脹結構  機械手臂  三明治結構  夾爪 
英文關鍵字 Additive Manufacturing  Fused Deposition Modeling  Metamaterial  Auxetic Structure  Robotic arm  sandwich structure 
學科別分類
中文摘要 在複合材料中三明治結構為一極為普及之結構,由高剛性的板材(Face Sheet)及低密度的芯材(Core Material)所組成,此結構具備高比強度和高比模量等性質。然而當結構受到高壓和衝擊時核心支撐結構卻容易產生斷裂損毀,因此將透過引入機械超穎材料作為保護層,使結構具有抗高壓、衝擊等能力。機械超穎材料因為通過特殊幾何結構設計和尺寸的改變,使得物體可以突破自然界性質的限制,其中拉脹結構為機械超穎材料一種,是蒲松比為負值的結構或材料,有拉脹特性的材料及結構多半有提高結構能量吸收與結構強度的能力,這些不同尋常機械性能使機械超穎材料在工程應用上展現出極大的應用潛力。然而超穎材料的結構設計往往具高複雜度與週期性,一般製造技術無法製造或難以作設計變更,因此具有可設計複雜結構優勢且可以大量製造之積層製造技術(Additive Manufacturing,AM)將是不可或缺之製造技術之一,本研究基於拉脹結構負蒲松比特性設計了新三維拉脹結構使結構能提高能量吸收,再透過結合複合材料質輕、高強度以及積層製造技術低原料耗損、高製造自由度優勢,打造一俱備抗衝擊且高強度之碳纖維複材三明治結構手臂零組件,並且多孔結構的設計也可提升機器人手臂的負載能力。
本研究以二維星形拉脹結構(Re-entrant Star)進行改良以設計,並與傳統蜂巢結構(Honeycomb)和蜂巢型拉脹結構(Re-entrant Honeycomb)比較,將改良後之二維星形拉脹結構以環狀陣列方式設計出新三維拉脹結構,命名為Wu結構,接著探討不同列印方向、不同列印壁厚以及不同結構角度下對Wu結構之影響,並與以蜂巢型拉脹結構設計而成之現有拉脹結構比較能量吸收能力的差異,此外通過和具有改善受力異向性優勢之截角八面體結構(Truncated Octahedron,TO)結合,可找出具有最佳能量吸收之設計方法。熔融沉積成型(Fused Deposition Modeling,FDM)技術為現今AM技術最為普及的一種技術,因此本研究以FDM技術列印結構進行機械性質測試。
結果顯示經改良後之星形拉脹結構的能量吸收可比蜂巢結構提升約1.1倍,比蜂巢型拉脹結構提升約48 %。且Wu結構於角度120度,且受力方向與列印方向夾90度情況下,可有最佳能量吸收。與現有拉脹結構比較可得到Wu結構相比有最小能量吸收的LY結構可提升約3.2倍。此外,Wu結構結合TO結構在受相同拉伸力、相同材料下能量吸收可比Wu結構提高7 %,可比TO結構提升1.37倍,同時強度也可提升約48 %。最後通過不同軟硬材料和不同排列方式結合之Wu結構與TO結構,得知Wu結構設計於最外層,TO結構設計於中間層,且相同結構以同一種材料之組合可有最佳之能量吸收。
最後本研究透過FDM技術列印Wu結構並成功將其應用於三明治結構作為抗衝擊層同時使用TO結構使結構具備改善受力異向性優勢,外加可拆式卡榫設計,使受到受損、老舊、疲乏之結構得以部分更換,此外也可將Wu結構應用於製造夾爪,透過使用具高彈性、高韌性、高耐久性等優勢之彈性材料列印Wu結構結合接榫使用,可設計出具有較佳包覆力、高變形量且可根據不同應用更換不同形狀之夾爪。
英文摘要 Sandwich structure is a very popular structure in composite materials, consisting of a high rigid face sheet and low density core material. This structure has the properties of high specific strength and highly specific modulus. However, when the structure is impacted by external force, the core material is prone to fracture and damage. Therefore, mechanical metamaterials are added into sandwich structure as a protective layer to make the structure resistant to impact. But the design of metamaterials is often complicated and periodic, which is difficult to manufacture with traditional manufacturing techniques. So in this study, Fused Deposition Modeling(FDM) technology will be used to design and manufacture new mechanical metamaterials structure that can increase energy absorption. And sandwich structures's core can overcome the damage from high pressure or impact. At the same time, it has the advantages of lightness and safety. Machines and humans can work together more safety. In addition, if you want to design a structure with high energy absorption, the Wu structure should be designed on the outer layer and the TO structure should be designed on the middle layer, and the same structure should be printed with the same material. Finally, mortise and tenon is designed and used between soft material and hard material to connect the structure. When the structure is damaged, it can be removed and replaced the damage part, without changing the whole part.
論文目次 中文摘要 I
Extended Abstract III
目錄 XI
圖目錄 XIV
表目錄 XXI
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第2章 文獻回顧 4
2.1 積層製造技術 4
2.2 超穎材料 6
2.2.1 拉脹結構 8
2.2.2 力學性能與機制 9
2.3 AM技術列印之拉脹結構的種類 13
2.4 AM技術於機器人手臂應用 20
2.4.1 以AM技術列印軟夾爪 21
2.5 複合材料 25
2.5.1 拉脹結構應用於三明治核心芯材 26
2.6 NX模擬 29
第3章 實驗方法與步驟 31
3.1 研究方法 31
3.1.1 拉脹結構設計 31
3.1.2 電腦輔助工程分析CAE 32
3.1.3 壓縮測試 32
3.1.4 拉伸測試 33
3.2 實驗儀器介紹 34
3.2.1 3D印表機 34
3.2.2 萬能試驗機 36
3.3 實驗儀器與參數 37
第4章 結構設計 41
4.1 拉脹結構之設計與選擇 41
4.2 拉脹結構與非拉脹結構最佳化 45
4.3 卡榫設計 48
第5章 結果與討論 50
5.1 列印線材之溫度參數最佳化 50
5.1.1 三點抗彎測試 51
5.1.2 OM觀察 52
5.2 拉脹結構 54
5.2.1 拉脹結構模擬 54
5.2.2 二維結構 57
5.2.3 Wu結構之最佳化 62
5.2.4 三維拉脹結構 73
5.2.5 彈性回復力 76
5.3 拉脹與非拉脹結構 79
5.3.1 Wu結構與TO結構模擬 80
5.3.2 Wu結構與TO結構之拉伸 81
5.3.3 Wu結構與TO結構之壓縮 84
5.3.4 Wu結構與TO結構之最佳化 93
5.4 卡榫結構與應用 96
5.4.1 卡榫模擬 96
5.4.2 卡榫應用 99
第6章 結論 105
6.1 拉脹結構 105
6.2 拉脹與非拉脹結構 106
6.3 卡榫結構與應用 107
第7章 未來展望 108
參考文獻 110
參考文獻 [1] Jagadis Chunder Bose, "On the rotation of plane of polarisation of electric wave by a twisted structure," Proceedings of the Royal Society of London, vol. 63, no. 389-400, pp. 146-152, 1898.
[2] D Prall and RS Lakes, "Properties of a chiral honeycomb with a Poisson's ratio of—1," International Journal of Mechanical Sciences, vol. 39, no. 3, pp. 305-314, 1997.
[3] Roderic Lakes, "Foam structures with a negative Poisson's ratio," Science, vol. 235, pp. 1038-1041, 1987.
[4] Graeme W Milton, "Composite materials with Poisson's ratios close to—1," Journal of the Mechanics and Physics of Solids, vol. 40, no. 5, pp. 1105-1137, 1992.
[5] Philip RA May, Joaquin M Fuster, Jochen Haber, and Ada Hirschman, "Woodpecker drilling behavior: an endorsement of the rotational theory of impact brain injury," Archives of Neurology, vol. 36, no. 6, pp. 370-373, 1979.
[6] Johan Christensen, Muamer Kadic, Oliver Kraft, and Martin Wegener, "Vibrant times for mechanical metamaterials," Mrs Communications, vol. 5, no. 3, pp. 453-462, 2015.
[7] Muamer Kadic, Tiemo Bückmann, Nicolas Stenger, Michael Thiel, and Martin Wegener, "On the practicability of pentamode mechanical metamaterials," Applied Physics Letters, vol. 100, no. 19, p. 191901, 2012.
[8] T Bückmann, M Thiel, M Kadic, R Schittny, and M Wegener, "An elasto-mechanical unfeelability cloak made of pentamode metamaterials," Nature communications, vol. 5, no. 1, pp. 1-6, 2014.
[9] Ruben Gatt and Joseph N Grima, "Negative compressibility," physica status solidi (RRL)–Rapid Research Letters, vol. 2, no. 5, pp. 236-238, 2008.
[10] Zachary G Nicolaou and Adilson E Motter, "Mechanical metamaterials with negative compressibility transitions," Nature materials, vol. 11, no. 7, pp. 608-613, 2012.
[11] F. P. W. Melchels, J. Feijen, and D. W. Grijpma, "A review on stereolithography and its applications in biomedical engineering," (in English), Biomaterials, Review vol. 31, no. 24, pp. 6121-6130, Aug 2010.
[12] F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann, R. Unterhinninghofen, H. U. Kauczor, and F. L. Giesel, "3D printing based on imaging data: review of medical applications," (in English), International Journal of Computer Assisted Radiology and Surgery, Review vol. 5, no. 4, pp. 335-341, Jul 2010.
[13] C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing, "Review of selective laser melting: Materials and applications," (in English), Applied Physics Reviews, Review vol. 2, no. 4, p. 21, Dec 2015, Art. no. 041101.
[14] J. Faludi, C. Bayley, S. Bhogal, and M. Iribarne, "Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment," (in English), Rapid Prototyping Journal, Article vol. 21, no. 1, pp. 14-33, 2015.
[15] Jon Excell and Stuart Nathan, "The rise of additive manufacturing," The engineer, vol. 24, 2010.
[16] M. Baumers, P. Dickens, C. Tuck, and R. Hague, "The cost of additive manufacturing: machine productivity, economies of scale and technology-push," (in English), Technological Forecasting and Social Change, Article vol. 102, pp. 193-201, Jan 2016.
[17] Osama Abdulhameed, Abdulrahman Al-Ahmari, Wadea Ameen, and Syed Hammad Mian, "Additive manufacturing: Challenges, trends, and applications," Advances in Mechanical Engineering, vol. 11, no. 2, p. 1687814018822880, 2019.
[18] Jasbir Singh Arora, Introduction to optimum design. Elsevier, 2004.
[19] K Satish Prakash, T Nancharaih, and VV Subba Rao, "Additive manufacturing techniques in manufacturing-an overview," Materials Today: Proceedings, vol. 5, no. 2, pp. 3873-3882, 2018.
[20] Xianglong Yu, Ji Zhou, Haiyi Liang, Zhengyi Jiang, and Lingling Wu, "Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review," Progress in Materials Science, vol. 94, pp. 114-173, 2018.
[21] George Neville Greaves, AL Greer, Roderic S Lakes, and Tanguy Rouxel, "Poisson's ratio and modern materials," Nature materials, vol. 10, no. 11, pp. 823-837, 2011.
[22] BM Lempriere, "Poisson's ratio in orthotropic materials," AIAA Journal, vol. 6, no. 11, pp. 2226-2227, 1968.
[23] Sergey V Dmitriev, Takeshi Shigenari, and Kohji Abe, "Poisson ratio beyond the limits of the elasticity theory," Journal of the Physical Society of Japan, vol. 70, no. 5, pp. 1431-1432, 2001.
[24] H MA Kolken and AA Zadpoor, "Auxetic mechanical metamaterials," RSC Advances, vol. 7, no. 9, pp. 5111-5129, 2017.
[25] Kenneth E Evans and Andrew Alderson, "Auxetic materials: functional materials and structures from lateral thinking!," Advanced materials, vol. 12, no. 9, pp. 617-628, 2000.
[26] Kenneth E Evans and KL Alderson, "Auxetic materials: the positive side of being negative," Engineering Science & Education Journal, vol. 9, no. 4, pp. 148-154, 2000.
[27] Nathanael Easey, Dimitro Chuprynyuk, Wan Wan Musa, Angus Banks, Yousef Dobah, Anton Shterenlikht, and Fabrizio Scarpa, "Dome-shape auxetic cellular metamaterials: manufacturing, modelling and testing," Frontiers in Materials, vol. 6, p. 86, 2019.
[28] S. H. Cui, B. M. Gong, Q. Ding, Y. T. Sun, F. G. Ren, X. G. Liu, Q. Yan, H. Yang, X. Wang, and B. W. Song, "Mechanical Metamaterials Foams with Tunable Negative Poisson's Ratio for Enhanced Energy Absorption and Damage Resistance," (in English), Materials, Article vol. 11, no. 10, p. 18, Oct 2018, Art. no. 1869.
[29] H. Y. Sarvestani, A. H. Akbarzadeh, A. Mirbolghasemi, and K. Hermenean, "3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability," (in English), Materials & Design, Article vol. 160, pp. 179-193, Dec 2018.
[30] H. Y. Sarvestani, A. H. Akbarzadeh, H. Niknam, and K. Hermenean, "3D printed architected polymeric sandwich panels: Energy absorption and structural performance," (in English), Composite Structures, Article vol. 200, pp. 886-909, Sep 2018.
[31] Q. Chen and N. M. Pugno, "In-plane elastic buckling of hierarchical honeycomb materials," (in English), European Journal of Mechanics a-Solids, Article vol. 34, pp. 120-129, Jul-Aug 2012.
[32] M. Bianchi, F. Scarpa, and C. W. Smith, "Shape memory behaviour in auxetic foams: Mechanical properties," (in English), Acta Materialia, Article vol. 58, no. 3, pp. 858-865, Feb 2010.
[33] Kenneth E Evans, MA Nkansah, and IJ Hutchinson, "Auxetic foams: modelling negative Poisson's ratios," Acta metallurgica et materialia, vol. 42, no. 4, pp. 1289-1294, 1994.
[34] Branko Nečemer, Janez Kramberger, Tomaž Vuherer, and Srečko Glodež, "Fatigue crack initiation and propagation in re-entrant auxetic cellular structures," International Journal of Fatigue, vol. 126, pp. 241-247, 2019.
[35] Yun-Che Wang and RS Lakes, "Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio," Journal of Composite Materials, vol. 39, no. 18, pp. 1645-1657, 2005.
[36] Lorna J Gibson, Michael Farries Ashby, GS Schajer, and CI Robertson, "The mechanics of two-dimensional cellular materials," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 382, no. 1782, pp. 25-42, 1982.
[37] Aniket Ingrole, Ayou Hao, and Richard Liang, "Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement," Materials & Design, vol. 117, pp. 72-83, 2017.
[38] Ming-Hui Fu, Yu Chen, and Ling-Ling Hu, "A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength," Composite Structures, vol. 160, pp. 574-585, 2017.
[39] M Shokri Rad, H Hatami, Z Ahmad, and A Karimdoost Yasuri, "Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures," Acta Mechanica, vol. 230, no. 6, pp. 2171-2185, 2019.
[40] Li Yang, Ola Harrysson, Harvey West, and Denis Cormier, "Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing," International Journal of Solids and Structures, vol. 69, pp. 475-490, 2015.
[41] Xin-Tao Wang, Bing Wang, Xiao-Wen Li, and Li Ma, "Mechanical properties of 3D re-entrant auxetic cellular structures," International Journal of Mechanical Sciences, vol. 131, pp. 396-407, 2017.
[42] M Shokri Rad, Hossein Hatami, R Alipouri, A Farokhi Nejad, and F Omidinasab, "Determination of energy absorption in different cellular auxetic structures," Mechanics & Industry, vol. 20, no. 3, p. 302, 2019.
[43] Ulrik Darling Larsen, O Signund, and S Bouwsta, "Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio," Journal of microelectromechanical systems, vol. 6, no. 2, pp. 99-106, 1997.
[44] Joseph N Grima, Ruben Gatt, Andrew Alderson, and KE Evans, "On the potential of connected stars as auxetic systems," Molecular Simulation, vol. 31, no. 13, pp. 925-935, 2005.
[45] Johannes TB Overvelde, Sicong Shan, and Katia Bertoldi, "Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape," Advanced Materials, vol. 24, no. 17, pp. 2337-2342, 2012.
[46] Ugur M Dilberoglu, Bahar Gharehpapagh, Ulas Yaman, and Melik Dolen, "The role of additive manufacturing in the era of industry 4.0," Procedia Manufacturing, vol. 11, pp. 545-554, 2017.
[47] Nicholas A Meisel, Amelia M Elliott, and Christopher B Williams, "A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing," Journal of intelligent material systems and structures, vol. 26, no. 12, pp. 1498-1512, 2015.
[48] Hisham MCM Anver, Rahim Mutlu, and Gursel Alici, "3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication," in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 442-447: IEEE.
[49] Charbel Tawk, Andrew Gillett, Marc in het Panhuis, Geoffrey M Spinks, and Gursel Alici, "A 3D-printed omni-purpose soft gripper," IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1268-1275, 2019.
[50] Song Qi, Hengyu Guo, Jie Fu, Yuanpeng Xie, Mi Zhu, and Miao Yu, "3D printed shape-programmable magneto-active soft matter for biomimetic applications," Composites Science and Technology, vol. 188, p. 107973, 2020.
[51] MSc(Ritsumeikan) BSc. Eng. Hons (Moratuwa), PhD (Ritsumeikan), "Soft robotics: Future of robotics ?," 2018.
[52] Market Research Future, "Soft Robotics Market Research Report - Global Forecast till 2024," 2020.
[53] Mordor Intelligence, "SOFT ROBOTICS MARKET - GROWTH, TRENDS, AND FORECAST (2020 - 2025)," 2019.
[54] H. Wang, Z. X. Lu, Z. Y. Yang, and X. Li, "A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance," (in English), Composite Structures, Article vol. 208, pp. 758-770, Jan 2019.
[55] L. Francesconi, A. Baldi, X. Liang, F. Aymerich, and M. Taylor, "Variable Poisson's ratio materials for globally stable static and dynamic compression resistance," (in English), Extreme Mechanics Letters, Article vol. 26, pp. 1-7, Jan 2019.
[56] K. Wang, Y. H. Chang, Y. W. Chen, C. Zhang, and B. Wang, "Designable dual-material auxetic metamaterials using three-dimensional printing," (in English), Materials & Design, Article vol. 67, pp. 159-164, Feb 2015.
[57] D. Chen and X. Y. Zheng, "Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios," (in English), Scientific Reports, Article vol. 8, p. 8, Jun 2018, Art. no. 9139.
[58] Tiantian Li and Lifeng Wang, "Bending behavior of sandwich composite structures with tunable 3D-printed core materials," Composite Structures, vol. 175, pp. 46-57, 2017.
[59] Shaoyu Hou, Tiantian Li, Zian Jia, and Lifeng Wang, "Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact," Materials & Design, vol. 160, pp. 1305-1321, 2018.
[60] Elipe Álvarez, Carlos Juan, and Lantada Díaz, "Comparative study of auxetic geometries by means of computer-aided design and engineering," Smart Materials and Structures (Print), vol. 21, no. 10, 2012.
[61] 潘柏菖, "以熱熔融沉積成型技術進行異形蜂巢結構之開發與設計," 成功大學材料科學及工程學系學位論文.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw