進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408202004471100
論文名稱(中文) 有機鈣鈦礦中間相薄膜在光與熱效應下的轉換機制
論文名稱(英文) Photo and Heat Annealing on the Transformation of Perovskite Intermediate Phase in Hybrid Organic-Inorganic MAPbI3 Film
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 張乃元
研究生(英文) Nai-Yuan Zhang
學號 N56071328
學位類別 碩士
語文別 中文
論文頁數 147頁
口試委員 指導教授-劉浩志
共同指導教授-呂正傑
口試委員-郭瑞昭
口試委員-許文東
口試委員-陳雨澤
中文關鍵字 鈣鈦礦  中間相  原子力顯微鏡  劣化 
英文關鍵字 perovskite  intermediate phase  AFM  degradation 
學科別分類
中文摘要   甲基胺基碘化鉛(methylammonium lead iodide, MAPbI3)為近年來新興的有機金屬鹵化鈣鈦礦(organometal halide perovskite)太陽能電池材料,其能量轉換效率(power conversion efficiency, PCE%)可以達到24.2 %以上。然而,傳統的熱處理製程容易使MAPbI3薄膜表面形成大量孔洞與晶界,從而降低其光電特性與能量轉換效率;另一方面,近年發現採用某些製程參數所形成MAPbI3在退火之前會先形成中間相(intermediate phase, MAI-PbI2-DMSO),而經由中間相轉換為鈣鈦礦得到的薄膜,能夠具有更優異的性能。
  本研究分別使用照光與加熱的方式對MAI-PbI2-DMSO薄膜進行退火處理,並搭配原子力顯微鏡、紫外/可見分光光譜儀、X光繞射分析及光致發光螢光光譜儀進行探討,發現光效應得到的MAPbI3具有比熱效應更高的結晶性、更低的缺陷濃度與表面粗糙度,除此之外還發現高強度照光300 mW/cm2並輔以40°C低溫退火處理的MAPbI3具有更佳的薄膜特性,顯示出照光結合低溫加熱能夠得到品質佳且緻密的MAPbI3薄膜。
  另外,為了深入探討熱與光誘導MAI-PbI2-DMSO中間相轉換的機制,我們結合原子力顯微鏡中的Quantitative nanomechanical(QNM)模式及X光繞射分析,觀察到在照光初期薄膜的彈性模數出現急遽下降,主要是因為新生MAPbI3鈣鈦礦相排列鬆散導致,而後出現的彈性模數回升是由於MAPbI3晶粒重新排列成長並緻密化,此時薄膜的主體仍是具有較高彈性模數的MAI-PbI2-DMSO,後來的彈性模數緩慢下降則是因為MAI-PbI2-DMSO的減少與MAPbI3的增加同時發生,最後MAI-PbI2-DMSO幾乎消失,而彈性模數值呈現穩定也就表示相轉換完成。同時我們也進行熱效應對MAI-PbI2-DMSO的轉換機制探討,發現在100°C加熱初期彈性模數也出現劇烈下降的現象,顯示高強度的熱能會使DMSO迅速從中間相中脫離,而產生彈性模數較低的MAPbI3鈣鈦礦相,隨著加熱時間的增加,彈性模數也隨之降低,代表著MAI-PbI2-DMSO的減少,最後達到穩定的趨勢,從此可以推斷MAPbI3鈣鈦礦相轉換完成,這過程僅在短短幾十秒秒內完成。
  最後,透過在一般環境與高濕度環境下的劣化測試,試片外觀照片與XRD分析結果顯示抗劣化性依序為:光熱混合效應>光效應>熱效應,由此判斷透過照光退火的方式能夠有效提升MAPbI3的抗劣化性,並且發現在一般大氣環境下,經由MAI-PbI2-DMSO中間相轉換的並不會產生MAPbI3∙H2O含水相,因此其具備更佳的抗水劣化能力,預期透過照光結合低溫加熱製程將MAI-PbI2-DMSO轉換的MAPbI3薄膜可望能有更佳特性與應用。
英文摘要   Methylammonium lead iodide, MAPbI3, is an emerging organometal halide perovskite solar cell material, the energy conversion efficiency of MAPbI3 can reach 24.2 %. However, the traditional heat treatment process often forms many pores and grain boundaries on the surface of the MAPbI3 film, thereby reducing its photoelectric characteristics and energy conversion efficiency. In recent years, it has been found that before annealing, there will be an intermediate phase (MAI-PbI2-DMSO) developed instead of MAPbI3 phase. The MAPbI3 thin film transformed from MAI-PbI2-DMSO will have shown some superior performance.
  In this study, the MAI-PbI2-DMSO thin film was annealed by photo or/and heat effect. The film property was investigated by atomic force microscope, ultraviolet/visible spectrometer, X-ray diffraction analysis and photoluminescence fluorescence spectrometer. The MAPbI3 obtained by the photo effect has higher crystallinity, lower defect concentration and surface roughness that by than the heat effect. It has also been found that MAPbI3 illuminated at 300 mW/cm2 and simultaneously annealed at 40 oC has better film characteristics, showing that light illumination combined with low temperature heating can lead MAPbI3 to form a high-quality and dense film. In order to further explore the mechanism of heat and photo-induced MAI-PbI2-DMSO intermediate transformation, we used quantitative nanomechanical (QNM-mode) AFM and X-ray diffraction analysis to measure the MAI-PbI2-DMSO film. It was observed that the elastic modulus of the film decreased quickly in the early stage of illumination, mainly due to the loose arrangement of the new MAPbI3 grain. The subsequent rebound of the elastic modulus is due to the rearrangement and growth of MAPbI3 grains and densification. At that time, the main body of the film is still MAI-PbI2-DMSO intermediate phase which has higher an elastic modulus. The final decrease in the elastic modulus is due to the decrease in MAI-PbI2-DMSO accompanied with the increase in MAPbI3. Finally, MAI-PbI2-DMSO gradually disappeared, and the elastic modulus kept stable, which means that the phase transformation is completed. Transformation mechanism of MAI-PbI2-DMSO by heat effect was also investigated. It was found that the elastic modulus did not decrease drastically during the initial heating period, presumably because the high temperature annealing led a high volatilization rate of DMSO, but the effect for grain rearrangement is minor. It showed that the thermal effect converted MAI-PbI2-DMSO to MAPbI3 completely in a very short time.
  Our results displayed that the degradation resistance is in the order: mixing effect> photo effect> heat effect. Base on this result, it was believed that the method of photo combined with annealing can effectively improve the degradation resistance of MAPbI3. It is interesting to find that, in the atmospheric environment, the MAPbI3 transformed from MAI-PbI2-DMSO does not degrade to MAPbI3∙H2O phase, meaning it has better resistance to water degradation.
論文目次 圖目錄 XXI
表目錄 XXX
第 1 章 1
1.1前言 1
1.2研究動機與目的 2
第 2 章 文獻回顧 4
2.1 MAPbI3之結構 4
2.2 MAPbI3薄膜製程 5
2.3 MAPbI3中間相薄膜 8
2.3.1 MAI-PbI2-DMSO 中間相 8
2.3.2 MAI-PbI2-DMF 中間相 18
2.3.3有機鈣鈦礦中間相相關論文統整 22
2.4光效應對鈣鈦礦的影響 24
第 3 章 實驗原理 30
3.1 AFM基本原理 30
3.1.1機械性質量測(Peak Force QNM) 30
3.2紫外-可見分光光度法(UV-Vis): 33
3.3 X光繞射儀原理(X-ray Diffraction) 34
第 4 章 實驗方法 35
4.1實驗藥品 35
4.2實驗儀器 35
4.3 ITO導電玻璃清洗 36
4.3 MAI-PbI2-DMSO中間相薄膜製作方式 36
4.4 MAPbI3薄膜製備 37
4.5 AFM量測參數與環境控制 40
4.6背光板架設 41
第 5 章 結果與討論 44
5.1中間相MAI-PbI2-DMSO 44
5.1.1表面形貌與機械性質 44
5.1.2結晶性與吸收度 45
5.1.3保存方式 46
5.1.4中間相在氮氣環境中的變化 49
5.2前驅液濃度對中間相轉換之影響 55
5.3熱效應 57
5.3.1加熱時間 57
5.3.2表面形貌與機械性質 58
5.3.3結晶性和吸收度 61
5.3.4熱效應轉換過程 63
5.3.5低溫長時間加熱 70
5.4光效應 71
5.4.1照光時間 71
5.4.2表面形貌與機械性質 77
5.4.3結晶性與吸收度 80
5.4.4光效應轉換過程 82
5.4.5一般大氣環境in-situ AFM 95
5.4.6高濕度環境in-situ AFM 102
5.4.7延遲時間退火 109
5.5混合效應 112
5.5.1表面形貌與機械性質 112
5.5.2結晶性與吸收度 114
5.5.3照光與加熱順序 115
5.6不同效應比較與劣化分析 117
5.6.1晶粒大小與孔洞 117
5.6.2結晶性 118
5.6.3吸收度 120
5.6.4缺陷 121
5.6.5大氣環境劣化 122
5.6.5高濕度環境劣化 129
5.7中間相轉換機制 134
5.7.1中間相轉換反應式 134
5.7.2熱與光效應能量計算 135
5.7.3中間相轉換機制 137
第 6 章 結論 139
第 7 章 未來展望 142
第 8 章 參考文獻 143

參考文獻 [1] Yaoguang Rong, Zhongjia Tang, Yufeng Zhao, Xin Zhong, Swaminathan Venkatesan, Harrison Graham, Matthew Patton, Yan Jing, Arnold M. Guloy, and Yan Yao, "Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells," Nanoscale, vol. 7, no. 24, pp. 10595-10599, 2015.
[2] A. Goetzberger, C. Hebling, and H. W. Schock, "Photovoltaic materials, history, status and outlook," (in English), Mater. Sci. Eng. R-Rep., Review vol. 40, no. 1, pp. 1-46, Jan 2003.
[3] Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To, and Rommel Noufi, "19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor," Progress in Photovoltaics vol. 16, no. 3, pp. 235-239, 2008.
[4] Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, vol. 110, no. 11, pp. 6595-6663, Nov 2010.
[5] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050, May 2009.
[6] Xiaolin Zhu, Yixiong Lin, Jovan San Martin, Yue Sun, Dian Zhu, and Yong Yan, "Lead halide perovskites for photocatalytic organic synthesis," Nature Communications, vol. 10, Jun 2019.
[7] Jingbi You, Lei Meng, Tze-Bin Song, Tzung-Fang Guo, Yang (Michael) Yang, Wei-Hsuan Chang, Ziruo Hong, Huajun Chen, Huanping Zhou, Qi Chen, Yongsheng Liu, Nicholas De Marco, and Yang Yang, "Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers," Nat. Nanotechnol., vol. 11, no. 1, pp. 75, Jan 2016.
[8] Giles E. Eperon, Victor M. Burlakov, Pablo Docampo, Alain Goriely, and Henry J. Snaith, "Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells," Advanced Functional Materials, vol. 24, no. 1, pp. 151-157, Jan 2014.
[9] Tae-Hee Han, Jin-Wook Lee, Chungseok Choi, Shaun Tan, Changsoo Lee, Yepin Zhao, Zhenghong Dai, Nicholas De Marco, Sung-Joon Lee, Sang-Hoon Bae, Yonghai Yuan, Hyuck Mo Lee, Yu Huang, and Yang Yang, "Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells," Nature Communications, vol. 10, Jan 2019.
[10] Yang Bai, Shuang Xiao, Chen Hu, Teng Zhang, Xiangyue Meng, Qiang Li, Yinglong Yang, Kam Sing Wong, Haining Chen, and Shihe Yang, "A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability," Nano Energy, vol. 34, pp. 58-68, Apr 2017.
[11] Dian Wang, Matthew Wright, Naveen KumarElumalai, and AshrafUddin, "Stability of perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 147, pp. 255-275, Apr 2016.
[12] Takeo Oku, "Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells," Solar Cells-New Approaches and Reviews, vol. 1, 2015.
[13] Shanshan Chen, Lei Lei, Songwang Yang, Yan Liu, and Zhong-Sheng Wang, "Characterization of Perovskite Obtained from Two-Step Deposition on Mesoporous Titania," Acs Applied Materials & Interfaces, vol. 7, no. 46, pp. 25770-25776, Nov 2015.
[14] JYen-Sook Jung, Kyeongil Hwang, Youn-Jung Heo, Youn-Jung Heo, Donmin Lee, Cheol-Ho Lee, Han-Ik Joh, Jun-Seok Yeo, and Dong-Yu Kim, "One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells," Acs Applied Materials & Interfaces, vol. 9, no. 33, pp. 27832-27838, Aug 2017.
[15] Xiong Li, Dongqin Bi, Chenyi Yi, Jean-David Décoppet, Jingshan Luo, Shaik Mohammed Zakeeruddin, and Anders Hagfeldt, "A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells," Science, vol. 353, no. 6294, pp. 58-62, Jul 2016.
[16] Kun Mu Lee, Chuan Jung Lin, Bo Yi Liou, Sheng Min Yu, Chien Chung Hsu, Vembu Suryanarayanan, and Ming Chung Wu, "Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 172, pp. 368-375, Dec 2017.
[17] Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nature Materials, vol. 13, no. 9, pp. 897-903, Sep 2014.
[18] Yaoguang Rong, Swaminathan Venkatesan, Rui Guo, Yanan Wang, Jiming Bao, Wenzhi Li, Zhiyong Fan, and Yan Yao, "Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells," Nanoscale, vol. 8, no. 26, pp. 12892-12899, 2016.
[19] Ying-Ke Ren, Shi-Dong Liu, Bin Duan, Ya-Feng Xu, Zhao-Qian Li, Yang Huang, Lin-Hua Hu, Jun Zhu, and Song-Yuan Dai, "Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating," Journal of Alloys and Compounds, vol. 705, pp. 205-210, May 2017.
[20] Xiaoqing Wei, Anjun Han, Jian Bao, Jiantao Bian, and Zhengxin Liu, "Crystallization reaction from intermediate phase with [0 0 2] preferential crystalline orientation to MAPbI3 and its influence on the performance of perovskite solar cells," Materials Letters, vol. 231, pp. 28-30, 2018.
[21] Yong Chan Choi, Se Won Lee, Hyo Jeong Jo, Dae-Hwan Kim, and Shi-Joon Sung, "Controlled growth of organic-inorganic hybrid CH3NH3PbI3 perovskite thin films from phase-controlled crystalline powders," Rsc Advances, vol. 6, no. 106, pp. 104359-104365, 2016.
[22] Yong Chan Choi, Se Won Lee, and Dae-Hwan Kim, "Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films," Apl Materials, vol. 5, no. 2, Feb 2017.
[23] Namyoung Ahn, Dae-Yong Son, In-Hyuk Jang, Seong Min Kang, Mansoo Choi, and Nam-Gyu Park, "Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide," Journal of the American Chemical Society, vol. 137, no. 27, pp. 8696-8699, Jul 2015.
[24] Maoshu Yin, Fengxian Xie, Han Chen, Xudong Yang, Fei Ye, BEnbing Bi, Yongzhen Wu, Molang Cai, and Liyuan Han, "Annealing-free perovskite films by instant crystallization for efficient solar cells," Journal of Materials Chemistry A, vol. 4, no. 22, pp. 8548-8553, Jun 2016.
[25] Wu-Qiang Wu, Dehong Chen, William A. McMaster, Yi-Bing Cheng, and Rachel A. Caruso, "Solvent-Mediated Intragranular-Coarsening of CH3NH3PbI3 Thin Films toward High-Performance Perovskite Photovoltaics," Acs Applied Materials & Interfaces, vol. 9, no. 37, pp. 31959-31967, Sep 2017.
[26] Yujun Yao, Xiaoping Zou, Jin Cheng, Dan Chen, Chuangchuang Chang, Tao Ling and, and Haiyan Ren, "Impact of Delay Time before Annealing MAI-PbI2-DMSO Intermediate Phase on Perovskite Film Quality and Photo-Physical Properties," Crystals, vol. 9, no. 3, Mar 2019.
[27] Muhammad Mateen, Zulqarnain Arain, Xuepeng Liu, Cheng Liu, Yi Yang, Yong Ding, Shuang Ma, Yingke Ren, Yunzhao Wu, Ye Tao, Pengju Shi, and Songyuan Dai, "High-performance mixed-cation mixed-halide perovskite solar cells enabled by a facile intermediate engineering technique," Journal of Power Sources, vol. 448, Feb 2020.
[28] Shuang Xiao, Yang Bai, Xiangyue Meng, Teng Zhang, Haining Chen, Xiaoli Zheng, Chen Hu, Yongquan, and Shihe Yang, "Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films," Advanced Functional Materials, vol. 27, no. 12, Mar 2017.
[29] Yongchao Ma, Yanliang Liu, Insoo Shin, In-Wook Hwang, Yun Kyung Jung, Jung Hyun Jeong, Sung Heum Park, and Kwang Ho Kim, "Understanding and Tailoring Grain Growth of Lead-Halide Perovskite for Solar Cell Application," Acs Applied Materials & Interfaces, vol. 9, no. 39, pp. 33925-33933, Oct 2017.
[30] Xin Guo, Christopher McCleese, Charles Kolodziej, Anna C. S. Samia, Yixin Zhao, and Clemens Burda, "Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI(3) perovskite," Dalton Transactions, vol. 45, no. 9, pp. 3806-3813, 2016.
[31] Jueming Bing, Jincheol Kim, Meng Zhang, Jianghui Zheng, Da Seul Lee, Yongyoon Cho, Xiaofan Deng, Cho Fai Jonathan Lau, Yong Li, Martin A. Green, Shujuan Huang, and Anita W. Y. Ho‐Baillie, "The Impact of a Dynamic Two-Step Solution Process on Film Formation of Cs-0.15(MA(0.7)FA(0.3))(0.85)PbI3 Perovskite and Solar Cell Performance," Small, vol. 15, no. 9, Mar 2019.
[32] Tze-Bin Song, Zhenghao Yuan, Finn Babbe, David P. Nenon, Erkan Aydin, Stefaan De Wolf, and Carolin M. Sutter-Fella, "Dynamics of Antisolvent Processed Hybrid Metal Halide Perovskites Studied by In Situ Photoluminescence and Its Influence on Optoelectronic Properties," Acs Applied Energy Materials, vol. 3, no. 3, pp. 2386-2393, Mar 2020.
[33] Xin Wang, Luyao Wang, Tong Shan, Shibing Leng, Hongliang Zhong, Qinye Bao, Zheng‑Hong Lu, Lin‑Long Deng, and Chun‑Chao Chen, "Low-Temperature Aging Provides 22% Efficient Bromine-Free and Passivation Layer-Free Planar Perovskite Solar Cells," Nano-Micro Letters, vol. 12, no. 1, Apr 2020.
[34] Amita Ummadisingu, Ludmilla Steier, Ji-Youn Seo, Taisuke Matsui, Antonio Abate, Wolfgang Tress, and Michael Grätzel, "The effect of illumination on the formation of metal halide perovskite films," Nature, vol. 545, no. 7653, pp. 208, May 2017.
[35] H. Tsai, R. Asadpour, J. C. Blancon, C. C. Stoumpos, O. Durand, J. W. Strzalka, B. Chen, R. Verduzco, P. M. Ajayan, S. Tretiak, J. Even, M. A. Alam, M. G. Kanatzidis, W. Nie, and A. D. Mohite, "Light-induced lattice expansion leads to high-efficiency perovskite solar cells," Science, vol. 360, no. 6384, pp. 67-70, Apr 2018.
[36] Dohyung Kim, Jae Sung Yun, Pankaj Sharma, Da Seul Lee, Jincheol Kim, Arman M. Soufiani, Shujuan Huang, Martin A. Green, Anita W. Y. Ho-Baillie, and Jan Seidel, "Light- and bias-induced structural variations in metal halide perovskites," Nature Communications, vol. 10, Jan 2019.
[37] L. J. Thoms and R. Girwidz, "Training and assessment of experimental competencies from a distance: Optical spectrometry via the Internet," Nuovo Cimento C-Colloquia and Communications in Physics, vol. 38, no. 3, May-Jun 2015.
[38] S. J. Sun, Y. N. Fang, G. Kieslich, T. J. White, and A. K. Cheetham, "Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation," Journal of Materials Chemistry A, vol. 3, no. 36, pp. 18450-18455, 2015.
[39] M. Spina, A. Karimi, W. Andreoni, C. A. Pignedoli, B. Nafradi, L. Forro, and E. Horvath, "Mechanical signatures of degradation of the photovoltaic perovskite CH3NH3PbI3 upon water vapor exposure," (in English), Appl. Phys. Lett., Article vol. 110, no. 12, p. 5, Mar 2017.
[40] Xuefei Han, Hao Xiong, Jiabin Qi, Yichuan Rui, Xin Zhang, Chengyi Hou, Yaogang Li, Hongzhi Wang, and Qinghong Zhang, "Controlling the transformation of intermediate phase under near-room temperature for improving the performance of perovskite solar cells," (in English), Sol. Energy, Article vol. 186, pp. 225-232, Jul 2019.
[41] Qianrui Lv, Wenhui He, Zhipeng Lian, Jie Ding, Qiang Li, and Qingfeng Yan, "Anisotropic moisture erosion of CH3NH3PbI3 single crystals," (in English), Crystengcomm, Article vol. 19, no. 6, pp. 901-904, Feb 2017.
[42] Qi Chen, Huanping Zhou, Tze-Bin Song, Song Luo, Ziruo Hong, Hsin-Sheng Duan, Letian Dou, Yongsheng Liu, and Yang Yang, "Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells," (in English), Nano Lett., Article vol. 14, no. 7, pp. 4158-4163, Jul 2014.
[43] Aurélien M. A. Leguy, Yinghong Hu, Mariano Campoy-Quiles, M. Isabel Alonso, Oliver J. Weber, Pooya Azarhoosh, Mark van Schilfgaarde, Mark T. Weller, Thomas Bein, Jenny Nelson, Pablo Docampo, and Piers R. F. Barnes, "Reversible Hydration of CH(3)NH(3)Pbl(3) in Films, Single Crystals, and Solar Cells," (in English), Chem. Mat., Article vol. 27, no. 9, pp. 3397-3407, May 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-04-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw