進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201916451700
論文名稱(中文) 非連續體數值分析法模擬山崩造成震動訊號之可行性研究
論文名稱(英文) Feasibility Study on Using Numerical Manifold Method Integrating Discontinuous Deformation Analysis to Simulate the Landslide Induced Signals
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 吳奇弦
研究生(英文) Chi-Hsien Wu
學號 N66064349
學位類別 碩士
語文別 中文
論文頁數 179頁
口試委員 指導教授-李德河
指導教授-吳建宏
口試委員-潘以文
口試委員-顧承宇
口試委員-陳振宇
中文關鍵字 山崩震動訊號  訊號處理  NMM-DDA  新磨村山崩 
英文關鍵字 Landslide induced signals  Signal processing  NMM-DDA  Xinmo landslide 
學科別分類
中文摘要 本研究以整合的數值流形法與非連續體變形分析法模擬中國四川茂縣新磨村山崩造成的震動訊號,探討以此整合非連續體數值分析法模擬震動訊號的可行性,並且連結塊體運動行為與震動訊號之間的關係。本研究亦利用快速傅立葉變換(FFT)頻譜分析與短時距傅立葉變換(STFT)頻譜分析,探討鄰近地震測站訊號與模擬所得訊號的頻率成分。
研究結果顯示整合的數值流形法與非連續體變形分析法不但可以良好地模擬邊坡破壞行為,亦可以有效地模擬震動訊號。但對於模擬震動訊號之模型,應修正邊界條件與縮小網格尺寸。修正邊界條件與縮小網格尺寸雖會導致塊體運動行為的改變,但震動訊號的精確度也會因修正而提升。本研究以兩種網格尺寸模型模擬新磨村山崩案例,並以固定邊界加黏性邊界的複合邊界設置底部邊界,可同時減少固定邊界造成的反射震波,又可同時固定住邊坡位置。
經過模擬訊號與地震測站訊號的特徵比較,發現除了觸發段外的訊號皆與現地情形相類似,確認以NMM-DDA模擬山崩造成震動訊號的可行性。比較MXI測站訊號與兩種網格尺寸模擬訊號STFT頻譜,粗網格STFT頻譜的結果較近似於MXI測站的結果,訊號較接近傳遞遠距離後的訊號型態,而細網格STFT頻譜的結果較接近新磨村現地所量測的震動訊號,有較多的高頻訊號。本研究亦透過頻譜分析,探討塊體運動行為與訊號之間的關係,塊體碰撞的行為會產生較高頻的訊號及較大的速度震幅,相較於塊體滑動的行為。
英文摘要 Landslide induced signals are thought to be related to the process or mechanism of landslide events. This study aims to verify the feasibility of using a discontinuous numerical method to simulate landslide induced signals and also connect the relationship between landslide movement behavior and signals.
This study simulates the Xinmo landslide induced signal by using a two-dimensional numerical manifold method integrating discontinuous deformation analysis (NMM-DDA). This study also utilizes fast Fourier transform (FFT) and short-time Fourier transform (STFT) to explore the characteristic of signals in the frequency domain.
This study revises boundary conditions and meshes size of NMM elements to improve the accuracy of simulated signals. Two mesh sizes are conducted, coarse mesh and fine mesh respectively.
The simulation result shows that NMM-DDA can not only demonstrate the process of Xinmo landslide well but also produce the near-site signals. Through a characteristic comparison of MXI station signal and simulated signals, this study suggests that it is feasible to simulate the landslide induced signal by using NMM-DDA. The coarse-mesh model signal appears to be the status after long-distance wave propagation. Besides, the fine-mesh model signal has more high-frequency content in the STFT spectrum.
The relationship between landslide movement behavior and signals has been discussed through spectral analysis. The result shows that collision behavior can create more high-frequency content and velocity amplitude than sliding behavior.
論文目次 摘要 I
Extended Abstract II
致謝 XV
目錄 XVI
表目錄 XX
圖目錄 XXI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的與流程 5
第二章 文獻回顧 7
2-1 訊號處理 7
2-1-1 快速傅立葉變換(FFT) 7
2-1-2 短時距傅立葉變換(STFT) 8
2-1-3 互相關(Cross correlation) 8
2-1-4 訊號處理應用於山崩災害研究成果 9
2-2 非連續體變形分析法(DDA) 15
2-2-1 理論架構與特性 15
2-2-2 塊體位移與變形矩陣 16
2-2-3 最小勢能與聯立方程 19
2-2-4 子矩陣組立 20
2-2-5 塊體系統運動學 24
2-3 數值流形法(NMM) 30
2-3-1 理論架構與特性 30
2-3-2 有限覆蓋系統 31
2-3-3 流形元素的位移函數 35
2-3-4 最小勢能與聯立方程 36
2-4 NMM與DDA整合 38
2-4-1 網格整合 38
2-4-2 NMM元素與DDA塊體接觸 39
2-5 黏性邊界理論 43
第三章 研究場址 45
3-1 災情概述 45
3-2 區域概述 47
3-2-1 地理位置 47
3-2-2 地質與地形 49
3-2-3 歷史地質活動 52
3-2-4 水文與降雨概況 54
3-3 崩塌原因 56
3-4 震動訊號紀錄 61
第四章 數值模擬 64
4-1 驗證模型 64
4-1-1 斜坡-塊體自重分析 64
4-1-2 懸臂梁受點荷重分析 67
4-1-3 柱桿件受衝擊波分析 70
4-2 新磨村山崩粗網格模型 75
4-2-1 網格設定 75
4-2-2 參數設定 77
4-2-3 模擬結果 81
4-2-4 敏感度分析 86
4-3 新磨村山崩細網格模型 90
4-3-1 網格尺寸影響 90
4-3-2 模擬結果 95
4-4 粗網格與細網格模型結果探討 102
4-5 小結 108
第五章 訊號分析 109
5-1 鄰近地震測站訊號分析 109
5-1-1 訊號特徵 110
5-1-2 FFT頻譜特徵 111
5-1-3 STFT頻譜特徵 114
5-2 數值模擬訊號分析 118
5-2-1 訊號特徵 119
5-2-2 FFT頻譜特徵 123
5-2-3 STFT頻譜特徵 128
5-3 模擬訊號與地震測站訊號比較 135
5-3-1 訊號及頻譜比較 135
5-3-2 互相關分析 138
5-4 訊號與塊體運動行為關係 141
5-5 小結 142
第六章 結論與建議 143
6-1 結論 143
6-2 建議 145
參考文獻 146
附錄A 153
附錄B 155
附錄C 157
附錄D 162
附錄E 164
附錄F 168
附錄G 176

參考文獻 1. 大西有三、佐々木猛與Gen-Hua Shi,不連続変形法(DDA),丸善株式会社,東京,日本,2005。
2. 不連続性岩盤解析実用化研究会,流形法・不連續變形法統合解析プログラム NmmDda Ver2.0 解説書・使用手冊,不連続性岩盤解析実用化研究会,日本,2012。
3. 王俞婷、張志新、林又青、李欣輯與陳宏宇,「2012年8月蘇拉颱風勘災報告:花蓮秀林鄉坡地災害勘查」,國家災害防救科技中心災害防救電子報,第87期,2012。
4. 石根華 (裴覺民 譯),「數值流形方法與非連續體變形分析」,清華大學出版社,北京,中國,1997。
5. 行政院,「民國107年災害防救白皮書附錄-106年災害相關統計分析」,行政院,台北,台灣,第19頁,2018。
6. 余威論,「速度-位移相關摩擦係數與巨型山崩運動特性」,中央大學應用地質研究所碩士學位論文,桃園,台灣,2011。
7. 呂喬茵、蕭婉容、施虹如、傅鏸漩與張志新,「中國大陸四川省茂縣疊溪鎮新磨村崩塌事件探討」,國家災害防救科技中心災害防救電子報,第146期,2017。
8. 李璟芳、曹鼎志、黃韋凱、林聖琪與尹孝元,「天空開闊度與局部立體模型於山崩判釋及地形變異評估:以台東縣紅葉村為例」,中華水土保持學報,第49卷,第1期,第27-39頁,2017。
9. 李鎮洋、賴文基、陳振宇、黃效禹與郭力行,「莫拉克颱風複合型災害發生歷程的時空重建-以小林村深層崩塌為例」中華水土保持學報,第42卷,第4期,第313-324頁,2011。
10. 林冠瑋、顏心儀與郭賢立,「豪雨觸發之大規模山崩的降雨條件分析」,工程環境會刊,第35期,第1-16頁,2015。
11. 林郁凱,「2005-2012年颱風期間寬頻地震網記錄到的山崩事件」,臺灣大學地質科學研究所碩士學位論文,台北,台灣,2016。
12. 林群富,「研擬顆粒流與連體數值耦合方法模擬山崩產生之震動訊號」,中興大學水土保持學系碩士學位論文,台中,台灣,2013。
13. 金順帆,「利用數值流形法模擬節理岩體基礎與震動邊坡行為之研究」,成功大學土木工程研究所碩士學位論文,台南,台灣,2009。
14. 唐昭榮、胡植慶、羅佳明與林銘郎,「遽變式山崩之PFC3D模擬初探—以草嶺與小林村為例」,地工技術,第122期,第143-152頁,2009。
15. 張睿明,「旗山溪及蘭陽溪集水區流域之降雨量、山崩及輸砂量之關係」,臺灣大學地質科學研究所碩士學位論文,台北,台灣,2012。
16. 陳春華,「非連續體變形分析法模擬集集地震引致草嶺邊坡崩塌模擬之研究」,成功大學土木工程研究所碩士學位論文,台南,台灣,2008。
17. 傅鏸漩、施虹如與張志新,「2018年全球重大天然災害回顧」,國家災害防救科技中心災害防救電子報,第165期,台北,台灣,2019。
18. 黃清哲、孫坤池、陳潮億與尹孝元,「不同型態土石流地聲特性之實驗研究」,中華水土保持學報,第38卷,第4期,第417-430頁,2007。
19. 葉智惠、黃清哲與連榮吉,「石塊運動產生地表振動及空中聲音訊號之研究」,中華水土保持學報,第39卷,第4期,第449-458頁,2008。
20. 謝承均,「利用有限元素法探討莫拉克颱風降雨引致獻肚山崩塌機制之研究」,成功大學土木工程研究所碩士學位論文,台南,台灣,2013。
21. 羅佳明、鄭添耀、林彥享、蕭震洋、魏倫瑋、黃春銘、冀樹勇、林錫宏與林銘郎,「國道3號七堵順向坡滑動過程之動態模擬」,中華水土保持學報,第42卷,第3期,第175-183頁,2011。
22. Allstadt, K. “Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms.” Journal of Geophysical Research, Vol. 118, pp. 1472–1490, 2010.
23. Bracewell, R. “The Fourier Transform and Its Applications.” McGraw-Hill, New York, U.S.A, 1965.
24. Chao, W.A., Wu, Y.M., Zhao, L., Chen, H., Chen, Y.G., Chang J.M., and Lin C.M. “A first near real-time seismology-based landquake monitoring system.” Scientific Reports, Vol. 7, 43510, 2017.
25. Chen, G., and Ohnishi, Y. “Slope stability analysis using Discontinuous Deformation Analysis method.” Paper presented at the 37th U.S. Symposium on Rock Mechanics (USRMS), 7-9 June, Vail, Colorado, American Rock Mechanics Association, 535, 1999.
26. Chen, K.T., and Wu, J.H. “Simulating the failure process of the Xinmo landslide using discontinuous deformation analysis.” Engineering Geology, Vol. 239, pp. 269-281, 2018.
27. Chen, T.C., Lin, M.L., and Wang, K.L. “Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan.” Engineering Geology, Vol. 171, pp. 31–44, 2014.
28. Ekström, G., and Stark, C.P. “Simple scaling of catastrophic landslide dynamics.” Science, Vol. 339, No. 6126, pp. 1416-1419, 2013.
29. Fan, J.R., Zhang, X.Y., Su, F.H., Ge, Y.G., Tarolli, P., Yang, Z.Y., Zeng, C., and Zeng, Z. “Geometrical feature analysis and disaster assessment of the Xinmo landslide based on remote sensing data.” Journal of Mountain Science, Vol. 14, No. 9, pp. 1677-1688, 2017a.
30. Fan, X., Xu, Q., Scaringi, G., Dai, L., Li, W., Dong, X., Zhu, X., Pei, X., Dai K., and Havenith, H. B. “Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China.” Landslides, Vol. 14, No. 6, pp. 2129-2146, 2017b.
31. Feng, Z., “The seismic signatures of the 2009 Shiaolin landslide in Taiwan.” Natural Hazards and Earth System Sciences, Vol. 11, No. 5, pp. 1559-1569, 2011.
32. Feng, Z.Y., Lo, C.M., and Lin, Q.F. “The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods.” Landslides, Vol. 14, No. 2, 661-674, 2017.
33. Gribonval, R. “Time Frequency Analysis: Concept and Method ”, WILEY, USA, pp. 62-71, 2008.
34. Haque, U., Silva, P.F. da, Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu, J.H., and Glass, G.E. “The human cost of global warming: deadly landslides and their triggers (1995–2014)” Science of the Total Environment, Vol. 682, pp. 673-684, 2019.
35. Jiao, Y.Y., Zhang, X.L., Zhao, J., and Liu, Q.S. “Viscous boundary of DDA for modeling stress wave propagation in jointed rock.” International Journal of Rock Mechanics & Mining Sciences, Vol. 44, pp. 1070-1076, 2007.
36. LeVeque, R.J., “Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems” Siam, Philadelphia, U.S., 2007.
37. Li, W., Chen, Y., Liu, F., Yang, H., Liu J., and Fu, B. “Chain‐style landslide hazardous process: constraints from seismic signals analysis of the 2017 Xinmo landslide, SW China. JGR Solid Earth, Vol. 124, No. 2, pp. 2025-2037, 2019.

38. Meng, W., Xu, Y., Cheng, W.C., and Arulrajah, A. “Landslide event on 24 June in Sichuan province, China: preliminary investigation and analysis.” Geosciences, Vol. 8, No. 2, pp. 39, 2018.
39. Miki, S., Koyama, T., Nishiyama, S., and Ohnishi, Y. “Development of coupled Discontinuous Deformation Analysis and Numerical Manifold Method (NMM-DDA).” International Journal of Computational Methods, Vol. 7, No. 1, pp. 131-150, 2010.
40. Miki, S., Sasaki, T., Ohnishi, Y., Nishiyama S., and Koyama, T. “Application of NMM-DDA to earthquake induced slope failure and landslide.” Paper presented at 47th U.S. Rock Mechanics/Geomechanics Symposium, 23-26 June, San Francisco, California, American Rock Mechanics Association, 492, 2013.
41. Moretti, L., Mangeney, A., Capdeville, Y., Stutzmann, E., Huggel, C., Schneider, D., and Bouchut, F. “Numerical modeling of the mount Steller landslide flow history and of the generated long period seismic waves.” Geophysical Research Letters, Vol. 39, No. 16, L16402, 2012.
42. Ouyang, C.J., Zhao, W., He, S.M., Wang, D.P., Zhou, S., An H.C., Wang, Z.W., and Cheng D.X. “Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China.” Journal of Mountain Science, Vol. 14, No. 9, pp. 1701-1711, 2017.
43. Pei, X.J., Guo, B., Cui, S.H., Wang D.P., Xu, Q., and Li T.T. “On the initiation, movement and deposition of a large landslide in Maoxian County, China.” Journal of Mountain Science, Vol. 15, No. 6, pp. 1319-1330, 2018.
44. Provost, F., Malet, J.P., Hibert, C., Helmstetter, A., Radiguet, M., Amitrano, D., Langet, N., Larose, E., Abancó, C., Hürlimann, M., Lebourg, T., Levy, C., Roy, G. L., Ulrich, P., Vidal, M., and Vial, B. “Towards a standard typology of endogenous landslide seismic sources.” Earth Surface Dynamics, Vol. 6, pp. 1059-1088, 2018.
45. Reddy, J. N., “An Introduction to The Finite Element Method ” McGraw-Hill, New York, U.S., 2006.
46. Roth, S., and Oudry, J. “Influence of mesh density on a finite element model under dynamic loading.” 3rd European Hyperworks Technology Conference, 2009.
47. Schöpa, A., Chao, W.A., Lipovsky, B.P., Hovius, N., White, R.S., Green, R.G., and Turowski, J.M. “Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath.” Earth Surface Dynamics, Vol. 6, pp. 467-485, 2018.
48. Shi, G.H., “Discontinuous Deformation Analysis: A New Numerical Model for the Statics and Dynamics of Block Systems” University of California, Berkeley, U.S., 1988.
49. Su, L.J., Hu, K.H., Zhang, W.F., Wang, J., Lei, Y., Zhang, C.L., CUI, P., Pasuto, A., and Zheng, Q.H. “Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China.” Journal of Mountain Science, Vol. 14, No. 9, pp. 1689-1700, 2017.
50. Suriñach, E., Vilajosana, I., Khazaradze, G., Biescas, B., Furdada, G., and Vilaplana, J.M. “Seismic detection and characterization of landslides and other mass movements” Natural Hazards and Earth System Sciences, Vol. 5, pp. 791-798, 2005.
51. Swanson, D.C., “Signal Processing for Intelligent Sensor Systems with MATLAB” CRC Press, Chippenham, Wiltshire, Great Britain, 2011.
52. Togo, T.; Shimamoto, T.; Ma, S.; Wen, X.; Hirose, T., and Lei, X. “High-velocity friction experiments on the Longmenshan fault gouge towards the understanding of dynamic rupture propagation of the 2008 Wenchuan Earthquake.” American Geophysical Union, T11A-1774, 2009.
53. Wang, Y., Zhao, B., and Li, J. “Mechanism of the catastrophic June 2017 landslide at Xinmo Village, Songping River, Sichuan Province, China.” Landslides, Vol. 15, No. 4, pp. 1-13, 2017.
54. Wu, J.H., and Chen, C.H. “Application of DDA to simulate characteristics of the Tsaoling landslide.” Computers and Geotechnics, Vol. 38, pp. 741-750, 2011.
55. Zhao, G.F., Zhao, X.B., and Zhu, J.B. “Application of the Numerical Manifold Method for stress wave propagation across rock masses.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 38, pp. 92-110, 2014.
56. Zhao, S., Chigira, M., and Wu, X. “Buckling deformations at the 2017 Xinmo landslide site and nearby slopes, Maoxian, Sichuan, China.” Engineering Geology, Vol. 246, pp. 187-197, 2018.
57. Zhao, T. “Coupled DEM-CFD Analyses of Landslide-Induced Debris Flows”, Springer Nature Singapore Pte Ltd. & Science Press, Beijing, China, 2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw