進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201820182300
論文名稱(中文) 光電產業NMF/MDG有機溶劑含銅廢水生物處理系統最佳程序之研究
論文名稱(英文) Biological Treatment of copper-containing NMF/MDG organic wastewater from the TFT-LCD Industry
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 卞宗馨
研究生(英文) Tzung-Tsin Pien
學號 P56054107
學位類別 碩士
語文別 英文
論文頁數 102頁
口試委員 口試委員-林志高
口試委員-林財富
口試委員-王雅玢
指導教授-黃良銘
中文關鍵字 N-甲基甲酰胺  二乙二醇二甲醚    食微比  硝化作用  脫硝作用 
英文關鍵字 N-methylformamide  diethylene glycol monomethyl ether  copper  S0/X0 ratio  nitrification  denitrification 
學科別分類
中文摘要 本研究針對薄膜電晶體液晶顯示器光電產業製程所產生之含銅有機廢水進行生物可降解性進行評估,針對有機廢水當中主要有機物成分為N-甲基甲酰胺(NMF)跟二乙二醇二甲醚(MDG)進行好氧及缺氧狀態下的生物降解試驗,並觀察在含銅的情形下對於此兩種有機物之去除、生物除氮機制之影響,以建立含銅廢水之生物處理最佳處理程序。
批次結果顯示,在好氧缺氧條件下,NMF與MDG皆能有效的被微生物去除,並且濃度在800 mg/L跟1,000 mg/L以下不會抑制生物硝化與脫硝。此外,即便NMF在分解過程中會產生氨氮,其於好氧環境中,初始食微比(S0/X0)小於0.28的範圍內,亦不會抑制NMF的降解以及後續的硝化作用。另一方面,在含銅的環境下,可以發現銅對於脫硝作用的抑制比硝化作用顯著,若添加含銅實廠廢水,5 mg/L的銅會降低39 %的脫硝速率,而單獨添加MDG做為碳源時,可以發現MDG的降解效率及脫硝作用同時受到銅的抑制,表示銅對於脫硝的抑制機制可能主要取決於碳源的利用率,而非脫硝作用本身。除了批次實驗之外,藉由添加銅於好氧/缺氧連續批次式反應槽中進行汙泥馴養,當每天添加0.5 mg/L的銅並且控制汙泥齡在20天時,可發現出流水質在87天的連續操作下並未產生異常,顯示長期添加低濃度的銅並搭配固定排泥能夠有效避免反應槽去除NMF、MDG、COD以及氮系汙染物之效能受到影響。
英文摘要 In this study, the feasibility for treating copper-containing organic wastewater from TFT-LCD manufacturing process industry was investigated. N-methylformamide (NMF) and diethylene glycol monomethyl ether (MDG) were the main components detected in the copper-containing wastewater. Therefore, the biodegradations of NMF and MDG, as well as the effects of copper, were examined under anoxic and aerobic condition using batch tests. Under aerobic and anoxic condition, NMF and MDG could be successfully degraded and no inhibition was observed either on nitrification or denitrification at concentrations up to 1000 mg/L and 800 mg/L, respectively. The released ammonia from NMF under aerobic condition also showed no inhibition on NMF degradation and the following nitrification even when S0/X0 reached 0.28. By adding copper containing wastewater, the result showed that denitrification had a lower tolerance on copper than nitrification process, and denitrification rate decreased by 39 % at 5 mg/L of copper. The degradation of MDG was also affected under anoxic condition, implying that the existence of copper might inhibit denitrification by slowing down the utilization of carbon source rather than nitrate reduction. Furthermore, lab-scale A/O SBR was operated for 87 days by adding 0.5 mg/L of copper per day with sludge retention time (SRT) at 20 days. A/O SBR performance of NMF, MDG, COD and nitrogenous species removal was good, showing microorganisms might be able to adapt the copper-containing environment under proper operation.
論文目次 摘要 I
Abstract III
誌謝 V
Table of content VII
List of Table IX
List of Figure XII
Chapter 1 Introduction 1
Research framework 3
Chapter 2 Literature Review 5
2.1 Characteristics of N-Methylformamide (NMF) and Diethylene glycol monomethyl ether (MDG) 5
2.2 Copper source and form from wastewater 7
2.3 Biological Nitrogen removal 7
2.4 Copper inhibition 10
2.5 Application of SBR on wastewater treatment 15
Chapter 3 Materials and Methods 19
3.1 Full scale A/O MBR system 19
3.2 Lab scale A/O SBR Operation 21
3.3 Water Quality Analytical Method 26
3.4 Batch bioassays experiment 29
Chapter 4 Results and discussion 35
4.1 NMF degradation and effect on nitrification and denitrification bioassays 36
4.2 Effect of MDG on nitrification and denitrification 47
4.3 Summary of NMF/MDG degradation under different condition 52
4.4 Copper effect on nitrification with raw wastewater 54
4.5 Copper effect on denitrification with raw wastewater 58
4.6 Effect of copper on nitrification 62
4.7 Effect of copper on NMF and MDG degradation under anoxic condition 68
4.8 Summary of copper effect on biological treatment batch assays 75
4.9 Copper adsorption and uptake batch 79
4.10 Performance of A/O Sequencing Batch Reactors 81
Chapter 5 Conclusions and suggestion 95
5-1 Conclusions 95
5-2 Suggestion 96
Chapter 6 Reference 99
參考文獻 Alattabi, A. W., et al. (2017). "An investigation into the effect of MLSS on the effluent quality and sludge settleability in an aerobic-anoxic sequencing batch reactor (AASBR)." Journal of Water Process Engineering.

Ashworth, D. and B. Alloway (2007). "Complexation of copper by sewage sludge-derived dissolved organic matter: Effects on soil sorption behaviour and plant uptake." Water, air, and soil pollution 182(1-4): 187-196.

Blackburne, R., et al. (2008). "Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater." Water research 42(8-9): 2166-2176.

Cabrero, A., et al. (1998). "Effects of copper and zinc on the activated sludge bacteria growth kinetics." Water research 32(5): 1355-1362.

Cervantes, C. and F. Gutierrez-Corona (1994). "Copper resistance mechanisms in bacteria and fungi." FEMS Microbiology Reviews 14(2): 121-137.

Delgado, L. F., et al. (2010). "Effect of cytostatic drugs on microbial behaviour in membrane bioreactor system." Bioresource technology 101(2): 527-536.

Ekvall, A. (1995). Metal speciation and toxicity in sewage sludge, Chalmers University of Technology.

EPA, U. (1999). Wastewater technology fact sheet—sequencing batch reactors, EPA 832-F-99-073.

Fu, Z., et al. (2009). "Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR)." Biochemical Engineering Journal 43(2): 191-196.

Fux, C., et al. (2003). "Nitrogen removal from digester supernatant via nitrite-SBR or SHARON?" Water Science and Technology 48(8): 9-18.

Gilomen, S. M. (2007). Identifying ammonia and nitrite oxidizing bacteria responsible for nitrification in opto-electronic wastewater, Southern Illinois University at Carbondale.

Hardin, B. D., et al. (1986). "Developmental toxicity of diethylene glycol monomethyl ether (diEGME)." Fundamental and Applied Toxicology 6(3): 430-439.

Henriques, I. D. and N. G. Love (2007). "The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins." Water research 41(18): 4177-4185.

Her, J.-J. and J.-S. Huang (1995). "Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough." Bioresource technology 54(1): 45-51.

Hooper, A. B. and K. R. Terry (1973). "Specific inhibitors of ammonia oxidation in Nitrosomonas." Journal of Bacteriology 115(2): 480-485.

Hu, Z., et al. (2003). "Impact of metal sorption and internalization on nitrification inhibition." Environmental science & technology 37(4): 728-734.

Hu, Z., et al. (2004). "Comparison of nitrification inhibition by metals in batch and continuous flow reactors." Water research 38(18): 3949-3959.

Jiang, R., et al. (2013). "Impacts of Cu (II) on the kinetics of nitrogen removal during the wastewater treatment process." Ecotoxicology and environmental safety 98: 54-58.

Kapoor, V., et al. (2016). "Use of functional gene expression and respirometry to study wastewater nitrification activity after exposure to low doses of copper." Environmental Science and Pollution Research 23(7): 6443-6450.

Kim, K. T., et al. (2006). "Estimating the combined effects of copper and phenol to nitrifying bacteria in wastewater treatment plants." Water research 40(3): 561-568.

Lei, C.-N., et al. (2010). "Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors." Chemosphere 81(1): 57-64.

Li, B. and S. Irvin (2007). "The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR)." Biochemical Engineering Journal 34(3): 248-255.

Matějů, V., et al. (1992). "Biological water denitrification—a review." Enzyme and microbial technology 14(3): 170-183.

McDermott, G. N., et al. (1963). "Effects of copper on aerobic biological sewage treatment." Journal (Water Pollution Control Federation): 227-241.

Mikkelson, K. A. and W. Sommermeyer (1995). AquaSBR Design Manual, Aqua-Aerobic Systems.

Naja, G., et al. (1999). Potentiometric titration: a dynamic method to study the metal binding-mechanism of microbial biomass. Process Metallurgy, Elsevier. 9: 201-210.

Ngah, W. W. and M. Hanafiah (2008). "Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review." Bioresource technology 99(10): 3935-3948.

Ochoa-Herrera, V., et al. (2011). "Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems." Science of the total environment 412: 380-385.

Ouyang, F., et al. (2016). "Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge." Journal of hazardous materials 301: 172-178.

Pokrovsky, O., et al. (2012). "Chemical and structural status of copper associated with oxygenic and anoxygenic phototrophs and heterotrophs: possible evolutionary consequences." Geobiology 10(2): 130-149.

Radniecki, T. S., et al. (2009). "Expression of merA, amoA and hao in continuously cultured Nitrosomonas europaea cells exposed to zinc chloride additions." Biotechnology and bioengineering 102(2): 546-553.

Sharma, B. and R. Ahlert (1977). "Nitrification and nitrogen removal." Water research 11(10): 897-925.

Wang, J., et al. (1999). "Effects of dissolved organic matter and pH on heavy metal uptake by sludge particulates exemplified by copper (II) and nickel (II): three-variable model." Water Environment Research 71(2): 139-147.

Wang, X.-H., et al. (2010). "Effects of long-term addition of Cu (II) and Ni (II) on the biochemical properties of aerobic granules in sequencing batch reactors." Applied microbiology and biotechnology 86(6): 1967-1975.

Wang, X., et al. (2011). "Adsorption of copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation." Desalination 278(1-3): 231-237.

Weißbach, M., et al. (2017). "A proposed nomenclature for biological processes that remove nitrogen." Environmental Science: Water Research & Technology 3(1): 10-17.

Yeager, C. C. (1991). "Copper and zinc preservatives." Disinfection, sterilization, and preservation: 358-361.

Yoo, H., et al. (1999). "Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor." Water research 33(1): 145-154.

邱翌竹,“動物用抗生素於畜牧廢水厭氧及好氧處理程序中生物降解潛勢與中間產物之評估”國立成功大學環境工程學系碩士論文,2016

李雅菁,“針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究”國立成功大學環境工程學系碩士論文,2000

陳柏鈞,“光電產業TFT-LCD製程有機廢水生物降解機制及微生物生態變化之探討”國立成功大學環境工程學系碩士論文,2010
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw