進階搜尋


下載電子全文  
系統識別號 U0026-1408201818294400
論文名稱(中文) 雙物質構成熱學超材料之四邊形排列研究
論文名稱(英文) Investigation of Bi-Material Arrangement Using Quadrilateral Thermal Metamaterials
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 106
學期 2
出版年 107
研究生(中文) 朱靖媗
研究生(英文) Ching-Hsuan, Chu
學號 N96051318
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-楊瑞珍
口試委員-傅龍明
口試委員-張志彰
中文關鍵字 熱學超材料  熱遮罩  轉換熱學  各向異性 
英文關鍵字 Thermal metamaterials  Thermal cloak  Transformation thermodynamics  Anisotropy 
學科別分類
中文摘要 熱學超材料所構成的熱遮罩,其遮罩性能取決於高、低熱傳導係數的物質排列方式以及層數的多寡。本研究以模擬及實驗結果兩者相互驗證,我們首先探討理想材料係數組成的四邊形熱學超材料的COMSOL模擬結果,其熱學超材料結構的排列變化與層數的多寡皆會造成溫度線分布的改變。而經由模擬結果顯示,四邊形熱學超材料的熱遮罩性能會隨著熱學超材料的層數上升而提升,我們藉由此模擬作出的結論找到理想的四邊形熱學超材料排列方式。
實驗中,我們首先檢驗熱學超材料裝置中所使用的金屬材料的熱係數,接著以量測出來的參數與理想的熱學超材料排列進行模擬分析,並同時組裝我們實作中的熱學超材料裝置,最後檢測我們模擬與實驗結果是否達到相同的溫度趨勢。結果顯示,四邊形熱學超材料有效地將中間遮罩層內的溫度梯度降低,改變了裝置的溫度特徵。本研究提出的新型熱遮罩僅需兩種不同熱傳導係數材料,做簡單組合即可達到優良的熱遮罩效果。
英文摘要 The efficiency of the thermal cloak which is composed of the thermal metamaterials depends on the number of layers and the staggered arrangement using two materials is investigated in this study. We conduct both simulation and the experiment. First, we discuss the simulation results using the COMSOL software with ideal materials coefficients of the quadrilateral thermal metamaterials. The arrangement of its structures and the layer numbers of the thermal metamaterials would cause different isotherm distribution. Based on above results, we find the optimal arrangement of our quadrilateral thermal metamaterials.
In the experiment, we examine the thermal coefficients of those metal materials using the Hot Disk Thermal Constants Analyzer. Then, we implement the measured thermal parameters to the COMSOL simulation models. At the same time, we assemble the quadrilateral thermal metamaterials, setup experiment and then measure the temperature field using an infrared camera. The results show, the designed thermal device efficiently decreases the temperature gradient of cloaked area enclosed by the thermal metamaterials. The novel design demonstrates a great effect of the thermal cloaking by simply using two materials.
論文目次 中文摘要I
EXTENDED ABSTRACTII
致謝XII
目錄XIII
圖目錄XVI
表目錄XXI
縮寫說明XXII
符號說明XXIII
第一章緒論1
1.1簡介1
1.2熱學超材料THERMAL METAMATERIALS2
1.3文獻回顧3
1.4研究架構8
第二章原理9
2.1轉換熱學TRANSFORMATION THERMODYNAMICS9
2.2等效介質理論EFFECTIVE MEDIUM THEORY11
2.3理論分析16
第三章實驗與方法19
3.1軟體與儀器19
3.1.1AutoCAD19
3.1.2SolidWorks19
3.1.3COMSOL Multiphysics19
3.1.4OriginPro19
3.1.5FLIR Tools20
3.1.6熱係數分析儀Thermal Constants Analyzer20
3.1.7真空幫浦 Vacuum Pump21
3.1.8高溫爐Vulcan Single Setpoint Control Furnace21
3.1.9靜態水槽Unstirred Water Bath22
3.1.10紅外線熱像儀Infrared Camera22
3.2COMSOL熱傳導模擬23
3.2.1模型繪製23
3.2.2導熱介面材料Thermal interface material25
3.2.3COMSOL模擬材料及邊界條件26
3.2.4一維溫度線性圖形分析28
3.3實驗架構30
3.3.1實驗模型設計30
3.3.2材料熱傳導係數量測32
3.3.3熱學超材料製作35
3.3.4實驗架設40
第四章結果與討論41
4.1COMSOL模擬分析41
4.1.1模擬分析理想材料之等溫線分佈42
4.1.2模擬分析理想材料之溫度檢測線45
4.2實驗材料係數COMSOL模擬與實驗結果之比較50
4.2.1實驗之暫態結果50
4.2.2實驗材料之COMSOL模擬與實驗結果53
第五章結論與展望57
5.1結論57
5.2未來展望58
參考文獻59
附錄62
參考文獻 Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I., Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 112, 273-280 (2017).
Bandaru, P. R., Vemuri, K. P., Canbazoglu, F. M., & Kapadia, R. S., Layered thermal metamaterials for the directing and harvesting of conductive heat. AIP Adv. 5 (5), 053403 (2015).
Bruggeman, D. A. G., Dielectric constant and conductivity of mixtures of isotropic materials. Ann. Phys.(Leipzig) 24, 636-679 (1935).
Buchanan, M., Focus: A Thermostat that Consumes No Energy. Physics 9, 89 (2016).
Bückmann, T., Kadic, M., Schittny, R., & Wegener, M., Mechanical cloak design by direct lattice transformation. Proc. Natl. Acad. Sci. 112 (16), 4930-4934 (2015).
Chen, T. Y., Weng, C. N., Chen, J. S., Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008).
Deng, H., Wang, T., Gao, J., & Yang, X., Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics. J. Opt. 16 (3), 035102 (2014).
Guenneau, S., Amra, C., & Veynante, D., Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express. 20, 8207(2012).
Han, T., Bai, X., Gao, D., Thong, J. T., Li, B., & Qiu, C. W., Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).
Kadic, M., Bückmann, T., Schittny, R., & Wegener, M., Experiments on cloaking in optics, thermodynamics and mechanics. Phil. Trans. R. Soc. A 373 (2049), 20140357 (2015).
Leonhardt, U., Optical conformal mapping. Science 312, (5781), 1777-1780 (2006).
Li, J. Y., Gao, Y., & Huang, J. P., A bifunctional cloak using transformation media. J. Appl. Phys. 108 (7), 074504 (2010)
Li, Y., Bai, X., Yang, T., Luo, H., & Qiu, C. W., Structured thermal surface for radiative camouflage. Nat. Commun. 9 (1) 273 (2018).
Liu, D. P., Chen, P. J., & Huang, H. H., Realization of a thermal cloak–concentrator using a metamaterial transformer. Sci. Rep. 8 (1), 2493, (2018).
Liu, Y., Guo, W., & Han, T., Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations. Int. J. Heat Mass Transfer. 115, 1-5 (2017).
Maxwell-Garnett, J. C., Colours in metal glasses and metal films. Philos. Trans. R. Soc. Lond. 203, 385 (1904).
Maxwell-Garnett, J. C., VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II. Phil. Trans. R. Soc. Lond. A 205 (387-401), 237-288 (1906).
Narayana, S., Savo, S., & Sato, Y., Transient heat flux shielding using thermal metamaterials. Appl. Phys. Lett. 102 (20), 201904 (2013).
Pendry, J. B., Schurig, D., & Smith, D. R., Controlling electromagnetic fields. Science 312, 1780-1782 (2006).
Schittny, R., Kadic, M., Guenneau, S., & Wegener, M., Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110 (19), 195901 (2013).
Shen, X., Jiang, C., Li, Y., & Huang, J., Thermal metamaterial for convergent transfer of conductive heat with high efficiency. Appl. Phys. Lett. 109, 201906 (2016a).
Shen, X., Li, Y., Jiang, C., & Huang, J., Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117 (5), 055501 (2016b).
Tso, C. Y., & Chao, C. Y., Solid-state thermal diode with shape memory alloys. Int. J. Heat Mass Transfer. 93, 605-611 (2016).
Vemuri, K. P., & Bandaru, P. R., Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials. Appl. Phys. Lett. 103, 133111 (2013).
Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)
Yang, T., Wu, Q., Xu, W., Liu, D., Huang, L., & Chen, F., A thermal ground cloak. Phys. Lett. A. 380, 965-969 (2016).
Zhang, X., Metamaterials for perpetual cooling at large scales. Science 355 (6329), 1023-1024 (2017).
Zheng, R., Gao, J., Wang, J., & Chen, G., Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions. Nat. Commun. 2, 289 (2011).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw