進階搜尋


下載電子全文  
系統識別號 U0026-1408201818050800
論文名稱(中文) 探空火箭飛行控制系統之開發及地面驗證
論文名稱(英文) Development and Ground Test of Flight Control System for Sounding Rockets
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 沈張德
研究生(英文) Chang-Te Shen
學號 P46044126
學位類別 碩士
語文別 英文
論文頁數 80頁
口試委員 指導教授-趙怡欽
口試委員-譚俊豪
口試委員-詹劭勳
中文關鍵字 探空火箭  姿態估測  卡爾曼濾波器  機器人作業系統  模型預測控制 
英文關鍵字 Sounding Rocket  State Estimation  Multiplicative Extended Kalman Filter  ROS  Model Predictive Control 
學科別分類
中文摘要 高層大氣之科學量測經常使用探空火箭或高空氣球作為實驗載具,而隨著科技的進步,探空火箭發射的成本也慢慢在降低。在進行科學實驗時依照任務的不同,會有需要在軌道高點進行姿態控制,因此也衍生了即時姿態估測的需求。
本篇論文使用了慣性測量元件、磁力計及相機(Pixy Camera)的感測器組合,搭配乘法擴增卡爾曼濾波器(Multiplicative Extended Kalman Filter)透過模擬環境驗證了自旋穩定探空火箭的俯仰角及偏航角之估測誤差維持在±0.9°及±3° 之間。
本篇論文也架設了探空火箭減滾轉及姿態控制的地面測試平台,利用氣浮平台提供的低阻力環境測試反推力系統(Reaction Control System, RCS)以及即時的模型預測控制器(Model Predictive Control)。地面測試使用了機器人作業系統(Robot Operating System, ROS)讀取慣性測量元件及雷射掃描測距儀(Laser scanner)的資料,並連結姿態估測和控制程式執行測試載具的減滾轉及姿態控制實驗。
另外。在機器人作業系統(ROS)上也建立了用於開發地面測試程式的軟體迴圈模擬環境(Software-in-the-loop),提供在地面測試前開發及驗證控制系統的平台。
英文摘要 In this thesis, an IMU-magnetometer-Pixy camera sensors configuration with a multiplicative extended Kalman filter (MEKF) for sounding rocket attitude estimation system is developed and simulated. In the simulation, the sensor data is generated by the sensor model and rocket dynamic model. The pitch and yaw angle of the rocket can be estimated by the MEKF within the accuracy of ±0.9° and ±3° from the noisy sensor data.
The ground test platform for testing reaction control system (RCS) and the online optimization-based controller for sounding rocket attitude control is also setup. The state estimation of the test vehicle is obtained by an IMU and a laser scanner with an extended Kalman filter executing on Robot Operating System (ROS) installed in an Odroid XU4 embedded system. The thrusters of RCS perform an on-and-off control to de-spin the test vehicle and control it to the desire pose.
Before the implementation of the control system, a software-in-the-loop (SITL) simulation is also developed in ROS, which can provide a realistic and convenient environment for software integration.
論文目次 Chapter 1 Introduction 1
Chapter 2 Dynamic Modeling and Simulation 5
2.1 Coordinate Systems 5
2.1.1 Earth-centered Inertial Coordinate 5
2.1.2 Earth-centered Earth-fixed Coordinate 6
2.1.3 Geographic and Local-level Coordinate 6
2.1.4 Body and Aeroballistic Wind Coordinate 7
2.2 Kinematic Equations 8
2.2.1 The Polar Incidence Angles 8
2.2.2 Elements of Quaternion Algebra 9
2.3 Dynamic Equations 13
2.3.1 Translation Equations 13
2.3.2 Rotation Equations 15
2.3.3 Aerodynamics 16
2.3.4 Atmospheric Model 19
2.4 Simulation Results 20
Chapter 3 Sensor Models 23
3.1 Inertial Measurement Unit 23
3.1.1 Gyroscope Model 24
3.1.2 Accelerometer Model 24
3.2 Magnetometer Model 24
3.3 Sun Sensor Model 25
3.3.1 Camera Distortion and Pinhole Model 26
3.3.2 Camera Calibration 28
3.3.3 Camera-Based Sun Sensor Model 29
Chapter 4 State Estimation 31
4.1 Multiplicative Extended Kalman Filter 32
4.1.1 Propagation 33
4.1.2 Measurement Update 37
4.2 Simulation Result 40
4.2.1 Attitude Estimation 40
Chapter 5 Experimental Setup 52
5.1 Test Vehicle Dynamic Model 52
5.2 Actuator 54
5.3 Observer Design 56
5.4 Sensor Model 56
5.4.1 The Pixy Camera Model 57
5.4.2 Position Information 58
5.5 Controller Design – Model Predictive Control 58
5.5.1 Problem Formulation 58
5.6 Software-in-the-loop Simulation Structure 60
5.6.1 Simulation Results – State Estimation 60
5.6.2 Simulation Results – MPC 62
5.7 Hardware Setup 67
Chapter 6 Discussion and Future Works 72
Bibliography 79
參考文獻 [1] M. Miura, "State Estimation and Quick Trajectory Optimization for Air-Launch Rocket," IFAC Proceedings Volumes, vol. 43, no. 15, pp. 148-153, 2010.
[2] X. Lu, Y. Wang, and L. Liu, "Optimal ascent guidance for air-breathing launch vehicle based on optimal trajectory correction," Mathematical Problems in Engineering, vol. 2013, 2013.
[3] J. Zhu, E. Trélat, and M. Cerf, "Minimum time control of the rocket attitude reorientation associated with orbit dynamics," SIAM Journal on Control and Optimization, vol. 54, no. 1, pp. 391-422, 2016.
[4] L. Walter, G. Schloffel, S. Theodoulis, P. Wernert, E. Kostina, and F. Holzapfel, "Optimal control and numerical optimization for missile interception guidance," in Control Conference (ECC), 2014 European, 2014, pp. 1249-1255: IEEE.
[5] J. K. Bekkeng, "Prototype Development of a Low-Cost Sounding Rocket Attitude Determination System and an Electric field Instrument," Article, UiO, vol. 5, 2007.
[6] M. C. Charlton, "A sounding rocket attitude determination algorithm suitable for implementation using low cost sensors," AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH2003.
[7] NASA. (2004). Available: https://www.nasa.gov/missions/research/f_sounding.html
[8] F. L. Markley and J. L. Crassidis, Fundamentals of spacecraft attitude determination and control. Springer, 2014.
[9] J. L. Crassidis, F. L. Markley, and Y. Cheng, "Survey of nonlinear attitude estimation methods," Journal of guidance, control, and dynamics, vol. 30, no. 1, pp. 12-28, 2007.
[10] C. Coopmans, H. Chao, and Y. Chen, "Design and implementation of sensing and estimation software in AggieNav, a small UAV navigation platform," in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, pp. 649-654: American Society of Mechanical Engineers.
[11] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics 2nd Edition. 2007.
[12] R. Lange, "Nonlinear adaptive control of an endo-atmospheric dual-actuator interceptor," Technische Universität München, 2012.
[13] N. Trawny and S. I. Roumeliotis, "Indirect Kalman filter for 3D attitude estimation," University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, vol. 2, p. 2005, 2005.
[14] J. Sola, "Quaternion kinematics for the error-state Kalman filter," arXiv preprint arXiv:1711.02508, 2017.
[15] Earth Atmosphere Model. Available: https://www.grc.nasa.gov/www/k-12/airplane/atmosmet.html
[16] M. Kok, Probabilistic modeling for sensor fusion with inertial measurements. Linköping University Electronic Press, 2016.
[17] A. Ruelas, N. Velázquez, C. Villa-Angulo, A. Acuña, P. Rosales, and J. Suastegui, "A Solar Position Sensor Based on Image Vision," Sensors, vol. 17, no. 8, p. 1742, 2017.
[18] "Camera Calibration and 3D Reconstruction—opencv v2. 1 documentation.[Online]. 2013," ed.
[19] C. D. Hall, "Attitude Determination," in Spacecraft Attitude Dynamics and Control, 2003.
[20] T. D. Krovel, "Optimal tuning of PWPF modulator for attitude control," Norwegian University of Science and Technology, 2005.
[21] B. Yang, F. He, and Y. Yao, "Mpc-based design of on-off control law of the attitude control thruster," in Control Conference, 2008. CCC 2008. 27th Chinese, 2008, pp. 539-543: IEEE.
[22] D. Gorinevsky. (2005). Stanford University EE392m, Lecture14 - Model Predictive Control Part 1: The Concept.
[23] G. Grisetti, C. Stachniss, and W. Burgard, "Improved techniques for grid mapping with rao-blackwellized particle filters," IEEE transactions on Robotics, vol. 23, no. 1, pp. 34-46, 2007.
[24] C. Walsh and S. Karaman, "CDDT: Fast Approximate 2D Ray Casting for Accelerated Localization," arXiv preprint arXiv:1705.01167, 2017.
[25] M. Jaimez, J. G. Monroy, and J. Gonzalez-Jimenez, "Planar odometry from a radial laser scanner. A range flow-based approach," in Robotics and Automation (ICRA), 2016 IEEE International Conference on, 2016, pp. 4479-4485: IEEE.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw