進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201817563600
論文名稱(中文) 氧化鋅錫薄膜電晶體光檢測特性與閘極偏壓之相關性研究
論文名稱(英文) Dependence of gate voltage on photodetecting characteristics of zinc tin oxide thin film transistors
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 張鈞凱
研究生(英文) Chun-Kai Chang
學號 n56054017
學位類別 碩士
語文別 中文
論文頁數 130頁
口試委員 指導教授-陳貞夙
口試委員-吳季珍
口試委員-蘇彥勳
口試委員-徐邦昱
中文關鍵字 溶液法  場效光電晶體  鋅錫比  負閘極電壓脈衝 
英文關鍵字 solution processed  thin film transistor  Zn-Sn molar ratio  negative gate voltage pulse 
學科別分類
中文摘要 本實驗第一部分以溶液法製備不同鋅錫莫爾比的鋅錫氧化物薄膜電晶體(Zinc Tin Oxide Thin Film Transistor),鋅錫莫爾比分別為Sn:Sn+Zn=9%、Sn:Sn+Zn=33%、Sn:Sn+Zn=50%、Sn:Sn+Zn=67%、Sn:Sn+Zn=80%,共五種。以轉換特性曲線(IDVG curve)的結果,計算臨界電壓(VTH)、次臨界擺幅(S.S.)、載子遷移率(Mobility)、開關電流比(On/off current ratio)等基本電晶體性質,由以上四種性質判斷不同鋅錫比ZTO薄膜電晶體優劣。此外,使用波長為405nm、520nm、635nm雷射光作為光源(對應的光能量分別為3.06eV、2.38eV、1.95eV),針對不同鋅錫莫爾比ZTO薄膜電晶體作為場效光電晶體(photo-FET),在不同波長的照射下得到的光電晶體性質:光敏性(Sensitivity)、光響應(Responsivity)、外部量子效率(External Quantum Efficiency, EQE),判斷不同鋅錫比ZTO薄膜電晶體作為場效光電晶體之優劣。由基本電晶體以及光電晶體性質的結果,ZTO(Sn:Sn+Zn=
50%)薄膜電晶體為最佳比例。
本實驗第二部分為了更進一步判斷場效光電晶體的實際應用,使用405nm雷射作為光源,量測元件的動態光響應性(Dynamic photoresponse),主要探討探討ZTO(Sn:Sn+Zn=50%)薄膜電晶體元件在多次照光下的電流變化情況以及重複性。元件有兩個問題,光源開啟時電流上升的速度慢導致電流上升時間(Rise time)過長,以及光關掉後的光電流殘留行為導致電流衰減時間(Decay time)過久。因此吾人使用兩種閘極電壓脈衝(VG pulse)方法改善此行為。在照光一開始,施加負閘極偏壓脈衝一秒(雷射照光脈衝的參數與照光時相同),使光電流快速上升至飽和值,電流上升時間從原本的十幾秒下降為0.35秒。照光後,再施加正閘極偏壓脈衝一秒,使光電流能夠快速地回復為初始值。照光電流增加原因為中性氧空缺被光激發成帶正電氧空缺以及光電子,照光時,光電流變化受到光電子產生(generation)以及複合(recombination)速率的變化而影響,光源波長越短、光源功率密度越大會使得光電子產生數量增加,然而數量越多的帶正電氧空缺以及光電子,兩者相遇的機率增加,由於過量載子複合速率正相關於帶電氧空缺相遇光電子的機率,光電子複合的機率也提升,光電流難以飽和造成電流上升時間過長,負閘極偏壓脈衝會使照光產生正的帶正電氧空缺往主動層-介面層界面處移動並累積,排斥光電子往主動層表面累積,電荷分離(charge seperation)讓複合速率降低,所以光電流快速飽和,電流上升時間縮短。相反地,光源關掉後,由於殘留的光電子造成PPC(Persistent Photoconductivity)效應,本實驗使用正閘極偏壓脈衝,將元件還原成沒有光電子貢獻的狀態。吾人使用過量載子的公式描述偏壓脈衝產生的電荷分離/複合,改善動態光響應性的原因。並透過改變光源波長、光源功率密度、負閘極偏壓脈衝時間等條件,比較各個參數對於動態光響應性的影響。
本實驗第三部分同樣使用ZTO(Sn:Sn+Zn=50%)薄膜電晶體,使用時間可控IDVG排除量測時間的影響,取代原先的時間不可控IDVG進行討論。比較全部偏壓掃伏都有照光(VG from -40V to +40V照光)、只有負閘極偏壓掃幅照光(VG from -40V to 0V照光、VG from 0V to +40V不照光)以及只有正閘極偏壓掃幅照光(VG from -40V to 0V不照光、VG from 0V to +40V照光)的差異。只有負閘極偏壓掃幅照光便能得到與全部偏壓掃伏都有照光相似的光響應性;只有正閘極偏壓掃幅照光,雖然也有光響應性,但是明顯低於其他兩個條件。掃伏過程中的閘極電壓正負會影響著照光光電子的貢獻,在負閘極偏壓掃伏時,電荷分離造成主動層存在較多的光電子;正閘極偏壓掃伏時,雖然不斷有光電子產生,但是正閘極偏壓會加速光電子與帶正電氧空缺複合,主動層存在的光電子相較於負閘極偏壓掃伏時為少,所以光響應性低。
英文摘要 In the first part, zinc tin oxide thin film transistors (ZTO TFTs) with various molar ratio are fabricated via solution process. Based on the results of the IDVG curve, basic transistor properties such as threshold voltage, subthreshold swing, carrier mobility and on/off current ratio are calculated. From the above four properties, we determine the different zinc-tin ratio ZTO thin film transistor quality. In addition, phototransistor properties: sensitivity, responsivity and external quantum efficiency (EQE), obtained from IDVG curve under irradiation with wavelengths of 405 nm, 520 nm, and 635 nm. As a result of basic transistor and photo-electrical crystal properties, ZTO(Sn:Sn+Zn=50%) Thin film transistor is the best ratio.
In the second part, in order to further determine the practical application of our ZTO TFT, a 405-nm laser was used as a light source to measure dynamic photoresponse of the device. There are two problems with the device. When the light source is turned on, the slow current rise causes the current rise time to be too long, and the photocurrent residual behavior after the light is turned off causes the current decay time to be too slow. Therefore, we use two gate voltage pulse methods to improve this behavior. At the beginning of illumination, apply negative gate voltage pulse for one second, so that the photocurrent rises rapidly to the saturation value, and the current rise time decreases from ten seconds to 0.35 seconds. After lighting, a positive gate voltage pulse is applied for one second to allow the photocurrent to quickly return to its initial value. The increase in photocurrent is due to the neutral oxygen vacancies being photoexcited into positively ionized oxygen vacancies and photoelectrons. When illuminated, photocurrent changes are affected by changes in the generation and recombination rates of photoelectrons. However, the more the number of positively ionized oxygen vacancies and photoelectrons, the greater the chance of encountering each other. The encountering probability is increased, photocurrent is difficult to saturate, the current rise time is long. Applying the negative gate voltage pulse to let positive positively ionized oxygen vacancies accumulate at the active layer-dielectric interface, photoelectrons accumulate on the surface of the active layer. This charge separation behavior reduces the encountering probability. Therefore, the photocurrent is rapidly saturated and the current rise time is shortened. Conversely, after the light source is turned off, the photoelectrons still exist caused by effect of the PPC (Persistent Photoconductivity). The positive gate voltage pulse is used to eliminate photoeleoctron to change back to its initial state.
In the third part, we use time-controllable IDVG replaces the original time-uncontrollable IDVG, excluding the impact of measurement time for discussion. Comparing three conditions: all gate voltage sweeps with illumination, only negative gate voltage sweep with illumination and only positive gate voltage sweep with illumination. Only negative gate voltage sweep with illumination can get the same responsivity as all gate voltage sweeps with illumination;,although only positive gate voltage sweep with illumination has responsivity, but it is obviously lower than the other two. When the negative gate voltage sweeps, the charge separation results in more photoelectrons in the active layer; while the positive gate voltage sweep, there is a constant photoelectrons are generated, but the positive gate bias accelerates the recombination of photoelectrons with positively ionized oxygen vacancies, and photoelectrons present in the active layer are less in comparison with negative gate bias sweeps, so the photoresponsivity is low.
論文目次 摘要 I
Abstract III
致謝 IX
目錄 X
圖目錄 XIII
表目錄 XIXX
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 2
第二章 理論基礎 3
2-1 光感測器 4
2-1.1光感測器特性參數 4
2-2氧化物場效光電晶體光響應性(Responsivity)文獻回顧 6
2-3 光電晶體動態光響應性(Dynamic Photoresponsivity)文獻回顧 8
第三章 實驗方法與步驟 20
3-1 實驗材料 20
3-1.1 實驗相關藥品 20
3-1.2 電子束蒸鍍源(Evaporation source) 20
3-1.3 基板(Substrate) 20
3-2 實驗流程 21
3-2.1 基板之清洗 21
3-2.2 溶液之製備 21
3-2.3 薄膜電晶體之製作 21
3-3 分析儀器 23
3-3.1 精密半導體參數分析儀 (Precision Semiconductor Parameter Analyzer) 23
3-3.2雷射光源 (Laser light source)、功率計(Power meter)以及偵測器(Detector) 24
3-3.3穿透式電子顯微鏡(Transmission Electron Microscopy) 25
3-3.4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 26
3-4雷射照光功率(Power density)量測 27
第四章 結果與討論 28
4-1 元件的命名 28
4-2材料分析 30
4-3不同鋅錫莫爾比之ZTO 薄膜電晶體之基本電晶體特性分析 33
4-4不同鋅錫莫爾比之ZTO 薄膜電晶體之光感測特性分析 37
4-5 ZTO 薄膜電晶體之動態光響應性 73
4-5.1不同閘極偏壓的影響 75
4-5.2不同汲極偏壓的影響 80
4-5.3閘極偏壓脈衝作用 82
4-5.4改變光源功率 90
4-5.5元件的light-gating行為 95
4-5.6施加不同負閘極偏壓脈衝時間影響 96
4-5.7改變光源之波長 101
4-5.8不同鋅錫莫爾比的ZTO薄膜電晶體 105
4-5.9機制 108
4-6閘極偏壓掃伏方式對薄膜電晶體光反應特性影響分析 113
4-6.1時間不可控IDVG掃伏量測光反應特性影響分析 115
4-6.2時間可控IDVG掃伏量測光反應特性影響分析 118
4-6.3閘極偏壓掃伏方式對薄膜電晶體光反應特性影響分析小結 121
結論 124
參考資料 126
參考文獻 [1] E. Fortunato, P. Barquinha and R. Martins, “Oxide Semiconductor Thin-Film Transistors : A Review of Recent Advances,” Advanced Materials, 24, 2945 (2012).
[2] J.F. Wager, B.Yeh, R.L. Hoffman and D.A. Keszler, “An amorphous oxide semiconductor thin-film transistor route to oxide electronics,” Current Opinion in Solid State and Materials Science, 18, 53 (2014).
[3] Y. Park, H.Y. Park, D.H. Kang, G.S. Kim, D. Lim, H.Y. Yu, C. Choi and J.H. Park, “The Effect of Post-Fabrication Annealing on an Amorphous IGZO Visible -Light Photodetector,” Journal of Nanoscience and Nanotechnology, 16, 11745 (2016).
[4] A. Nathan, S. Lee, S. Jeon, and J. Robertson, “Amorphous Oxide Semiconductor TFTs for Displays and Imaging,” Journal of Display Technology, 10, 917 (2013).
[5] J. Kim, S. Cho, Y.H. Kim and S.K. Park, “Pentacene phototransistor with gate voltage independent responsivity and sensitivity by small silver nanoparticles decoration,” Organic Electronics, 15, 2099 (2014).
[6] D. Bharti, V. Raghuwanshi, I Varun, A.K. Mahato and S.P.Tiwari, “Photo- Response of Low Voltage Flexible TIPS-Pentacene Organic Field-Effect Transistors,” IEEE Sensor Journal, 17, 3689 (2017).
[7] X. Liu, E.K.Lee, D.Y.Kim, H.Yu and J.H.Oh, “Flexible Organic Phototransistor Array with Enhanced Responsivity via Metal–Ligand Charge Transfer,” ACS Applied Materials and Interfaces, 8, 7291 (2016).
[8] D.Kufer and G.Konstantatos, “Photo-FETs Phototransistors Enabled by 2D and 0D Nanomaterials,” ACS Photonics,3, 2197 (2016).
[9] J.Yu, N.Tian, Y.F.Deng and H.H.Zhang, “Ultraviolet photodetector based on sol–gel synthesized MgZnO nanoparticle with photoconductive gain,” Journal of Alloys and Compounds, 667, 359 (2016).
[10] J. Yu, S.W.Shin, K.H.Lee, J.S.Park and S.J.Kang, “Visible-light-phototransistors
-based-on-InGaZnO-and-silver-nanoparticles,” Journal of Vacuum Science and Technology B, 33, 061211 (2015).
[11] J.Yu, K.Javaid, L.Liang, W.Wu, Y.Liang, A.Song, H. Zhang, W. Shi, T.C.Chang and H.Cao, “High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction,” Applied Materials and Interfaces, 10, 8102 (2018).
[12] M.G.Yun, Y.K.Kim, C.H.Ahn, S.W.Cho, W.J.Kang, H.K.Cho and Y.H.Kim, “Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process,
”Scientific Reports, 6, 31991 (2016).
[13] S.E.Ahn, I.Song, S.Jeon, Y.W.Jeon, Y.Kim, C.Kim, B.Ryu, J.H.Lee, A.Nathan, S.Lee, G.T.Kim and U.I.Chung, “Metal Oxide Thin Film Phototransistor for Remote Touch Interactive Displays,” Advanced Materials, 24, 2631 (2012).
[14] S.Jeon, S.E.Ahn, I.Song, C.J.Kim, U.I.Chung, E.Lee, I.Yoo, A.Nathan, S.Lee, K.Ghaffarzadeh, J.Robertson and K.Kim, “Gated three-terminal device architecture to
eliminate persistent photoconductivity in oxide semiconductor photosensor arrays
,” Nature Materials, 11, 301 (2012).
[15] F.Li, C.Ma, H.Wang, W.Hu, W.Yu, A.D.Sheikh and T.Wu, “Ambipolar solution-
processed hybrid perovskite phototransistors,” Nature Communications, 6, 8238 (2015).
[16] D.A. Neamen. Semiconductor Physics And Devices, 4th ed.; McGraw-Hill: New York, 642 (2011).
[17] S.S. Li. Semiconductor Physical Electronics, 2nd ed.; Springer: New York, 422 (2006).
[18] C.Xie, P.You, Z.Liu, L.Li and F.Yan, “Ultrasensitive broadband phototransistors based on perovskiteorganic-semiconductor vertical heterojunctions,” Light:Science and Applications, 6, e17023 (2017).
[19] J.Y.Li, S.P.Chang, M.H.Hsu and S.J.Chang, “High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering,” Materials, 10, 126 (2017).
[20] W.Wang, X.Pan, W.Dai, Y.Zeng and Z. Ye, “Ultrahigh sensitivity in the amorphous ZnSnO UV photodetector,” RSC Advances, 6, 32715 (2016).
[21] Y.Zhang, L.X. Qian, Z. Wu and X. Liu, “Amorphous InGaMgO Ultraviolet Photo-TFT with Ultrahigh Photosensitivity and Extremely Large Responsivity,” Materials, 10, 168 (2017).
[22] R.Soleimanzadeh, M.Kolahdouz, M.A. Charsooghi, Z.Kolahdouz and K. Zhang, “Highly selective and responsive ultra-violet detection using an improved phototransistor,” Applied Physics Letters, 106, 231102 (2015).
[23] J.Choi, J.Park, K.H.Lim, N.K.Cho, J.Lee, S.Jeon and Y.S.Kim, “Photosensitivity of InZnO thin-film transistors using a solution process,” Applied Physics Letters, 109, 132105 (2016).
[24] E.D.Gennaro, U.Coscia, G.Ambrosone, A.Khare, F.M.Granozio and U.S.di Ussio, “Photoresponse dynamics in amorphous-LaAlO3/SrTiO3 interfaces,” Scientific Reports, 5, 8393 (2015).
[25] Z.Sun, Z.Liu, J.Li, G.Tai, S.P.Lau and F.Yan, “Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity,” Advanced Materials, 24, 5878 (2012).
[26] Y.Miyamoto, D.Yoshikawa, K.Takei, T.Arie and S.Akita, “Effect of buffer layer on photoresponse of MoS2 phototransistor,” Japanese Journal of Applied Physics, 57, 06HB01 (2018).
[27] L.C.Liu, J.S.Chen, J.S.Jeng and W.U.Chen, “Variation of Oxygen Deficiency in Solution-Processed Ultra-Thin Zinc-Tin Oxide Films to Their Transistor Characteristics,” ECS Journal of Solid State Science and Technology, 2, Q59 (2013).
[28] J.F. Wager, D.A. Keszler, and R.E. Presley. Transparent Electronics. Springer: New York, 114 (2008).
[29] S. D. Brotherton, Introduction to Thin Film Transistors. Springer: Switzerland, 49 (2013).
[30] K.H. Ji, J.I. Kim, H.Y. Jung, S.Y. Park, Y.G. Mo, J. H. Jeong, J.Y. Kwon, M.K.Ryu, S. Y.Lee, R. Choi and J. K. Jeong, “The Effect of Density-of-State on the Temperature and Gate Bias-Induced Instability of InGaZnO Thin Film Transistors,” Journal of The Electrochemical Society, 157, H983 (2010).
[31] A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, “Electrical Properties of Amorphous Silicon Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations” Journal of The Electrochemical Society, 140, 3679, (1993).
[32] M.G.Yun, C.H. Ahn, Y. K. Kim, S. W. Cho, H. K. Cho and H. Kim, “Effects of top-layer thickness on electrical performance and stability in VZTO/ZTO bi-layer thin-film transistors,” Journal of Alloys and Compounds, vol. 672, pp. 449–456, 2016.
[33] S.R. Thomas, P.Pattanasattayavong and T.D. Anthopoulos, “Solution-processable metal oxide semiconductors for thin-film transistor applications,” Chemical Society Reviews, 42, 6910 (2013).
[34] Nanotechnology Measurement Handbook:A Guild to Electrical Measurements for Nanoscience Applications, Keithley, pp. 3-6~3-7.
[35] J.Wang, Z.Wang, B.Huang, Y.Ma, Y.Liy, X.Qin, X.Zhang and Y.Dai, “Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO,” ACS Applied Materials and Interfaces, 4, 4024 (2012).
[36] Y.J.Oh, H.K.Noh and K.J.Chang, “The effects of electric field and gate bias pulse on the migration and stability of ionized oxygen vacancies in amorphous In–Ga–Zn–O thin film transistors,” ACS Applied Materials and Interfaces, 16, 034902 (2015).
[37] P.S.Shewale, S.H.Lee and Y.S.Yu, “UV sensitive pulsed laser deposited ZnO thin films: Influence of growth temperature,” Journal of Alloys and Compounds, 744, 849 (2018)
[38] K.Chen, C.He, D.Guo, S.Wang, Z.Chen, J.Shen, P.Li and S.J.Kang, “Low-voltage-worked photodetector based on Cu2O/GaOOH shell-core heterojunction nanorod arrays,” Journal of Alloys and Compoubds, 755, 199 (2018).
[39] Q.M.Fu, D.C.He, Z.C.Yao, J.L.Peng, H.Y.Zhao, H.Tao, Z.Chen, Y.F.Tu, Y.Tian, D.Zhou G.Zheng and Z.B.Ma, “Self-powered ultraviolet photodetector based on ZnO nanorod arrays decorated with sea anemone-like CuO nanostructures,” Materials Letters, 222, 74 (2018).
[40] M.Dusza, F.Granek and W.Strek, “Illumination intensity dependent photoresponse of ultra-thin ZnO/graphene/ZnO heterostructure,” Journal of Alloys and Compoubds, 74, 176 (2017).
[41] C,Y.Tsay and P.H.Wu, “Properties of solution-processed MgInZnO semiconductor thin films and photodetectors fabricated at a low temperature using UV-assisted thermal annealing,” Ceramics International, 43, 11874 (2017).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2028-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw