進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201814150000
論文名稱(中文) 具氧化鋅鋁奈米晶粒電荷捕捉層薄膜電晶體之電荷捕捉釋放行為及其光感測性質研究
論文名稱(英文) Investigation of charge trapping/de-trapping behavior and photosensing characteristics in thin film transistors with AZO nanoparticle charge trapping layer
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 蕭仰軒
研究生(英文) Yang-Hsuan Hsiao
學號 N56054083
學位類別 碩士
語文別 中文
論文頁數 146頁
口試委員 指導教授-陳貞夙
口試委員-吳季珍
口試委員-蘇彥勳
口試委員-徐邦昱
中文關鍵字 電荷捕捉式薄膜電晶體  光電晶體  光敏感性  電荷捕捉機制 
英文關鍵字 charge trapping TFT  photo-induced oxygen vacancy  photosensitivity  charge trapping/de-trapping mechanism 
學科別分類
中文摘要 本實驗以三種不同疊層結構之電荷捕捉式薄膜電晶體(charge trapping thin film transistor)試片探討元件內部電荷捕捉位置與其照光感測性質的關係。試片種類分別為:(1)電荷捕捉層位於元件介電層內部之charge trapping TFT、(2)電荷捕捉層位於元件主動層與介電層界面處之charge trapping TFT以及(3)無電荷捕捉層結構之charge trapping TFT。
在製程上,選用溶液法製備AZO nanoparticle作為各元件之電荷捕捉層,並以旋轉塗佈方式塗佈於元件上,此外,各元件皆以SiO2/p+Si (p+Si為閘極,SiO2為介電層)作為基板,並以電子束蒸鍍方式鍍上Al2O3作為另一層介電層,得以將AZO捕捉層與SiO2介電層位置隔開,使其分別達到AZO捕捉層在介電層內部及介電層與主動層之界面處的捕捉位置,接著以溶液法製備出ZTO作為主動層。最後將三種元件以電子束蒸鍍,鍍上Al電極作為源極及汲極。
為了探討各疊層元件之電荷捕捉能力差異,將從對於元件施加正閘極偏壓(Positive gate bias +40V for 1s)的操作前後IDVG曲線偏移程度來判斷。量測手法為將元件在施加閘極偏壓操作前,進行IDVG曲線掃伏,並作為該元件之pristine state的IDVG性質,接著對元件施加正閘極偏壓操作後,再進行一次條件相同的IDVG曲線掃伏,並作為該元件之charge trapping state的IDVG性質,而藉由兩種state的IDVG曲線偏移量,吾人將得以釐清各疊層結構的電荷捕捉層位置差異與其電荷捕捉能力優劣的關係。
確認各疊層結構元件的電荷捕捉能力後,接著吾人將針對各結構之有無charge trapping狀態與該結構元件之光感測性質作討論,而本實驗使用光源為波長405 nm、520nm及635nm的雷射光(相對應的光子能量為3.06eV、2.38eV及1.95 eV ),針對各結構之charge trapping TFT作為光感測器於不同波長的照射光下得到的性質作分析。首先,透過先前研究可知主動層ZTO薄膜的能隙為3.85eV,對於入射光小於能隙能量的光反應機制,與ZTO內部的中性氧空缺(Vo)受光激發成帶電氧空缺(Vo+/Vo2+)及產生多餘電子有關;入射光波長越短(能量越大)、功率密度越大,受光激發產生的電子數目也會越多;而在TFT IDVG操作過程,隨著ZTO受光激發產生的多餘電子參與形成TFT通道層的累積,因此,在不照光與照光環境下進行量測,將能夠發現元件會有IDVG性質的變化現象,另外,在適當的閘極偏壓下,將可以達到高光敏性質,並能藉由控制閘極偏壓的大小,達到訊號放大的效果;而在本實驗中各元件於pristine state進行照光量測,其結果可以理解,皆由於各元件的主動層ZTO因受照光的反應機制所貢獻。另外,元件在施加正閘極偏壓的操作後,內部將進行電荷的捕捉,而從照光量測的結果來看,各疊層結構的元件相較於pristine state皆有提升的現象,因此,除了主動層ZTO照光產生載子的機制外,可以發現元件內部charge trapping/de-trapping機制也會貢獻照光量測的結果變化,從先前研究中,可以發現ZTO內部因照光產生的帶電氧空缺會在元件內部形成正電場,而AZO捕捉層中的捕捉電子會受到此正電場而釋放回到ZTO中,因此,元件於charge trapping state進行照光時,其結果可以理解,由ZTO本身的照光機制與AZO捕捉層中捕捉電子在照光環境下會被釋放回ZTO中的兩種機制所貢獻,而從三種不同波長的雷射光源量測及三種不同疊層元件的照光結果來看,使元件內部具備額外的捕捉電子,將能夠提升元件作為光感測器於各能譜的照光性質。
建立於前面部分的實驗結果,吾人試圖將元件主動層ZTO受照光的反應機制與電荷捕捉層內部之捕捉電子因照光而釋放回主動層ZTO貢獻光感測變化的機制各自分開,透過該元件的pristine state與charge trapping state的照光結果差異,進而獲得元件在照光量測過程,只受到內部捕捉電子因照光而釋放回ZTO機制所貢獻的光感測變化量;另外,透過不同疊層結構元件的捕捉層位置差異,將能夠釐清不同位置釋放捕捉電子與元件光感測性質的關係,從實驗結果來看,從元件介電層內部的AZO捕捉層釋放捕捉電子回到ZTO中,能夠最有效提升照光感測性質,因其結構具備良好的捕捉電子能力,因此,也能夠在照光量測中,釋放足夠的捕捉電子至ZTO中,增加其受照光而產生的總電子數量。
最後,藉由前述之電荷捕捉層內部捕捉電子受照光而釋放可以有效提升元件的感光性質,吾人對元件進行動態光反應操作,作為元件感光能力的測試,並提出先以閘極偏壓操作元件使電子捕捉於介電層內部,接著以雷射照光使電子釋放回ZTO主動層的方式,達到元件電流訊號放大的效果,證實由電荷捕捉層釋放的電子是元件光反應操作上有效提升感光訊號重要的途徑。本實驗研究元件捕捉電子與其光感測性質的關係,藉由不同疊層結構的元件達到在元件不同物理位置捕捉電子之目的,並從相同元件、不同狀態下進行照光量測的結果差異,說明捕捉電子從元件不同物理位置被釋放回主動層ZTO所造成的光感測性質變化,並證實電荷捕捉位於元件的介電層內部因其擁有良好的捕捉能力,確實能夠有效地提升元件的光敏感性,而使其在動態光反應操作中達到明顯的電流訊號放大的效果。
英文摘要 In this study, the relationship between charge trapping/de-trapping behavior and photosensing characteristics are studied. There are three different stack structures of thin film transistors are under discussion, for each is (1) Al/ZTO/Al2O3/AZO/SiO2/p+Si charge trapping TFT, (2) Al/ZTO/AZO/Al2O3/SiO2/p+Si charge trapping TFT and (3) Al/ZTO/Al2O3/SiO2/p+Si charge trapping TFT.
In the fabrication process of devices, charge trapping layer of AZO nanoparticles is spin-coated with the solution of AZO nanoparticles precursor. The active layer of ZTO layer is also spin-coated with the solution of ZTO precursor. Furthermore, the dielectric layer of Al2O3 is deposited by the e-beam evaporation. Finally, the Al electrodes is deposited as the source and drain by the e-beam evaporation.
Transfer characteristics (IDVG curves) and dynamic photoresponse drain current are measured on these devices to confirm the enhancement of optical response by charge trapping electrically and de-trapping optically approach. The positive threshold voltage (VTH) shift of each device is obtained to charge trapping properties by positive gate voltage (VG) of 40V for 1s. The negative VTH shift of each device is obtained under illumination of different power density irradiation which demonstrated the photoresponse mechanism of these devices. In order to compare with charge trapping/de-trapping properties and photoresponse mechanism, our devices have been designed to exhibit pristine state and charge trapping state with the operation of positive gate voltage. The △VTH of both two states under illumination are demonstrated in our study and optical parameter such as sensitivity is also extracted. Furthermore, the dynamic photoresponse drain current is measured on two conditions which are the drain current is read on trapping state and de-trapping state . The enhancement between trapping and de-trapping state current is also defined.
In the first part, the fundamental thin film transistor properties and charge trapping characteristics are analyzed. It is observed that the charges trapped in the dielectric layer with the operation of positive gate voltage 40V for 1s. The positive VTH shift of each device is obtained to demonstrate the charge trapping mechanism of TFT. Therefore, our devices can exhibit two different states which are pristine state and charge trapping state. There are no charges trapped in the dielectric layer before the operation of positive gate voltage which defined as the pristine state. And there are charges trapped in the dielectric layer after operation of positive gate voltage which defined as the charge trapping state.
In the second part, the photoresponse properties and charge trapping/de-trapping mechanism are studied. The transfer characteristics of both pristine state and charge trapping state in the dark and under illumination of 405nm, 520nm and 635nm are investigated. However, it is observed that the negative VTH shift can be significantly enlarged while device is at the charge trapping state compared to pristine state. Based on our previous studies, the photoresponse mechanism of ZTO is related to the ionization of neutral oxygen vacancies (Vo) to positively-charged oxygen vacancies (Vo+/Vo2+). The charge de-trapping mechanism is that the positively-charged oxygen vacancies in active layer will help the trapping electrons release from the dielectric layer to active layer. Hence, the enhancement of photoresponse properties at the charge trapping state can be attributed to the increasing number of electrons at ZTO active layer by light assisted de-trapping charges from the dielectric layer.
In the final part, the dynamic photoresponse drain current is measured on different conditions. According to the second part, the largest VTH shift under illumination of 405nm at the charge trapping state shows potential of optical response application. Here, we report a concept for our devices using AZO nanoparticle charge trapping layer served as a basis for electrically-induced charge trapping and optically-mediated charge de-trapping through the positively-charged oxygen vacancies in ZTO active layer under illumination. Operating sequences and read drain current obtained from our devices are illustrated in our study. There are two conditions in the read drain current operation. When the drain voltage (VD=10V) is applied without illumination, the read drain current is defined as the trapping state current. On the other hand, when the drain voltage (VD=10V) is applied after light illumination, the read drain current is defined as the de-trapping state current. As a result, the enhancement of photoresponse drain current between trapping state current and de-trapping state current is also investigated.
In this study, the relationship of charge trapping/de-trapping mechanism and optical response properties is confirmed. The enhancement of photo-response based on charge trapping electrically and de-trapping optically approach is also confirmed.
論文目次 摘要 II
ABSTRACT V
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 理論基礎與文獻回顧 3
2-1 光檢測器 3
2-1.1 光檢測器種類 3
2-1.2光檢測器特性參數 8
2-2 薄膜電晶體之電荷捕捉機制文獻回顧 9
2-3 氧化物半導體材料電荷捕捉釋放機制與照光感測特性相關文獻回顧 12
2-4 感光元件之動態光反應操作方式文獻回顧 17
第三章 實驗方法與步驟 26
3-1 實驗材料 26
3-1.1清洗基板藥品 26
3-1.2 AZO nanoparticle溶液配置藥品 26
3-1.3 ZTO溶液配置藥品 26
3-1.4電子束蒸鍍源(Evaporation source) 26
3-1.5基板(Substrate) 27
3-2 實驗流程 28
3-2.1基板清洗 28
3-2.2 溶液製備 28
3-2.3 電荷擷取式薄膜電晶體製作 29
3-3 分析儀器 30
3-3.1 表面粗度儀(Alpha-Step Profilometer) 30
3-3.2 低掠角X-光繞射儀 (Grazing Incident Angle X-ray Diffraction, GIAXRD ) 30
3-3.3 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 30
3-3.4 穿透式電子顯微鏡(Transmission Electron Microscopy) 31
3-3.5 原子力顯微鏡(Atomic Force Microscopy, AFM) 31
3-3.6 紫外光-可見光光學儀(UV-visible Spectrometer) 31
3-3.7 精密半導體參數分析儀 (Precision Semiconductor Parameter Analyzer) 32
3-3.8 雷射光源(Laser source) 32
第四章 結果與討論 33
4-1 元件命名與元件結構 33
4-2 材料分析 36
4-2.1 TEM分析 37
4-2.2 UV-vis分析 44
4-2.3 XRD分析 46
4-2.4 AFM分析 48
4-3電性及電荷捕捉特性分析 51
4-3.1 薄膜電晶體之基本電性 51
4-3.2電荷捕捉式薄膜電晶體之電荷捕捉特性 55
4-4 電荷捕捉式薄膜電晶體(CHARGE TRAPPING TFT)之光感測特性分析 66
4-4.1 Al/ZTO/Al2O3/AZO/SiO2/p+Si 電荷捕捉式薄膜電晶體之電荷捕捉狀態與其光感測特性關係分析 69
4-4.2 Al/ZTO/AZO/Al2O3/SiO2/p+Si 電荷捕捉式薄膜電晶體之電荷捕捉狀態與其光感測特性關係分析 82
4-4.3 Al/ZTO/Al2O3/SiO2/p+Si 電荷捕捉式薄膜電晶體之電荷捕捉狀態與其光感測特性關係分析 94
4-4.4電荷捕捉式薄膜電晶體(charge trapping TFT)之光感測特性小結 105
4-5 電荷從元件不同位置釋放與元件光感測特性關係之探討 106
4-5-1 元件內部不同位置的電荷釋放與光感測特性變化小結 115
4-6 元件內部捕捉電荷釋放與其動態光反應變化(DYNAMIC PHOTORESPONSE)關係分析 116
4-6-1 動態光反應特性(Dynamic photoresponse)機制小結 127
結論 131
未來展望 133
參考資料 139
參考文獻 [1] J. F. Wager, B. Yeh, R. L. Hoffman, and D. A. Keszler,” An amorphous oxide semiconductor thin-film transistor route to oxide electronics”, Curr. Opin. Solid State Mater. Sci., vol. 18, no. 2, pp. 53–61 (2014).
[2] Y. Park, H. Park, D. Kang, G. Kim, D. Lim, H. Yu, C. Choi, and J. Park, vol. 16, No. 11 (2016).
[3] A. Nathan, S. Lee, S. Jeon, and J. Robertson, “Amorphous Oxide Semiconductor TFTs for Displays and Imaging,” Journal of Display Technology, No.11 (2014).
[4] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances”, Advance Materials, vol. 24, pp. 2945-2986 (2012).
[5] Donald A. Neamen, Semiconductor Physics And Devices: Basic Principles 4ed. US: McGraw-Hill Science Engineering, 2011, p. 371.
[6] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, letters to nature, vol. 432, pp. 488-492 (2004).
[7] S. P. Electronics, No Title. .
[8] “1996may-potentials-berger-MSM.pdf.” .
[9] B. Principles, No Title.
[10] C. P. T. Nguyen, T. T. Trinh, J. Raja, A. H. T. Le, K. Jang, Y. J. Lee and J. Yi,” High performance non-volatile memory with the control of charge trapping states in an amorphous InSnZnO active channel”, Semicond. Sci. Technol. 30 075009 (2015).
[11] M. Kumar, S. Otari, H. Jeong, D. Lee, “Solution-processed highly efficient Au nanoparticles and their reduced graphene oxide nanocomposites as charge trapping media for ZnO thin film transistor nonvolatile memory”, Journal of Alloys and Compounds 725, 1115-1122 (2017).
[12] J. Y. Bak, S. M. Yoon,” High-performance transparent, all-oxide nonvolatile charge trap memory transistor using In-Ga-Zn-O channel and ZnO trap layer”, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32, 060604 (2014).
[13] M. G. Yun, Y. K. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho and Y. H. Kim, “Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process”, Scientific Reports , 6:31991 (2016).
[14] W. T. Chen and H. W. Zan, “High-Performance Light-Erasable Memory and
Real-Time Ultraviolet Detector Based on Unannealed Indium–Gallium–Zinc–Oxide Thin-Film Transistor”, IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 1(2012).
[15] J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. P. D. Shieh, P. T. Liu and Y. P. Huang,” Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 4 (2011).
[16] J. Zhuang, S. T. Han, Y. Zhou and V. A. Roy, “Flash memory based on solution processed hafnium dioxide charge trapping layer”, J. Mater. Chem. C, 2, 4233 (2014).
[17] J. Raja, C. P. Nguyen, C. Lee, N. Balaji, S. Chatterjee, K. Jang, H. Kim and J. Yi,” Improved Data Retention of InSnZnO Nonvolatile Memory by H2O2 Treated Al2O3 Tunneling Layer: A Cost-Effective Method”, IEEE ELECTRON DEVICE LETTERS, VOL. 37, NO. 10 (2016).
[18] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe and K. Chan,” A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377 (1996).
[19] Y. Lee, J. Yang, D. Lee, Y. H. Kim, J. H. Park, H. Kim and J. H. Cho, “Trap-induced photoresponse of solutionsynthesized MoS2”, Nanoscale, 8, 9193 (2016).
[20] J. Y. Chen, Y. C. Chiu, Y. T. Li, C. C. Chueh and W. C. Chen, “Nonvolatile Perovskite-Based Photomemory with a Multilevel Memory Behavior”, Adv. Mater. 29, 1702217 (2017).
[21] D. Ljubic, C. S. Smithson, Y. Wu and S. Zhu, “Highly UV-Sensitive and Responsive Benzothiophene/Dielectric Polymer Blend-Based Organic Thin-Film Phototransistor”, Adv. Electron. Mater. 1, 1500119 (2015).
[22] S. B. Son, Y. Kim, A. Kim, B. Cho and W. K. Hong, “Ultraviolet Wavelength-Dependent Optoelectronic Properties in Two-Dimensional NbSe2−WSe2 van der Waals Heterojunction-Based Field-Effect Transistors”, ACS Appl. Mater. Interfaces, 9, 41537−41545 (2017).
[23] H. Ling, J. Lin, M. Yi, B. Liu, W. Li, Z. Lin, L. Xie, Y. Bao, F. Guo and W. Huang, “Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory”, ACS Appl. Mater. Interfaces, 8, 18969−18977 (2016).
[24] S. Lshida, Y. Anno, M. Takeuchi, M. Matsuoka, K. Takei, T. Arie and S. Akita, “Highly photosensitive graphene field-effect transistor with optical memory function”, Scientific Reports, 5:15491 (2015).
[25] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan and A. Ghosh, “Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices”, NATURE NANOTECHNOLOGY, VOL 8 (2013).
[26] S. Jeon, S. E. Ahn, L. Song, C. J. Kim, U. I. chung. E. Lee, I. Yoo, A. Nathan, S. Lee, K. Ghaffarzadeh, J. Robertson and K. Kim, “Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays”, NATURE MATERIALS , VOL 11 (2012).
[27] C. Qian, J. Sun, L. Kong, Y. Fu, Y. Chen, J. Wang, S. Wang, H. Xie, H. Huang, J. Yang and Y. Gao, “Multilevel Nonvolatile Organic Photomemory Based on Vanadyl-Phthalocyanine/para-Sexiphenyl Heterojunctions”, ACS Photonics 4, 2573-2579 (2017).
[28] J. Lee, S. Pak, Y. W. Lee, Y. Cho, J. Hong, P. Giraud, H. S. Shin, S. M. Morris, J. I. Sohn, S. Cha and J. M. Kim, “Monolayer optical memory cells based on artificial trap-mediated charge storage and release”, NATURE COMMUNICATIONS, 8:14734 (2017).
[29] S. Lei, F. Wen, Q. Wang, Y. Huang, Y. Gong, Y. He, P. Dong, J. Bellah, A. George, L. Ge, J. Lou, N. J. Halas, R. Vajtai and P. M. Ajayan, “Optoelectronic Memory Using Two-Dimensional Materials”, Nano Lett. 15, 259−265 (2015).
[30] H. L. Yip, S. K. Hau, N. S. Back, H. Ma, and A.K.Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer-Modified ZnO/Metals as Cathodes”, Adv. Mater. 20, 2376–2382 (2008).
[31] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proc, “Flash Memory Cells—An Overview”, IEEE 85 1248 (1997).
[32] J. T. Li, L. C. Liu, P. H. Ke, J. S. Chen, and J. S. Jeng, “Light-bias coupling erase process for non-volatile zinc tin oxide TFT memory with a nickel nanocrystals charge trap layer”, J. Phys. D: Appl. Phys. 49, 115104 (2016).
[33] F. Li, Y. Chen, C. Ma, U. Buttner, K. Leo and T. Wu, “High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor”, Adv. Electron. Mater. 3, 1600430 (2017).
[34] C. H. Ahn, H. K. Cho and H. Kim, “Carrier confinement effect-driven channel design and achievement of robust electrical/photostability and high mobility in oxide thin-film transistors”, J. Mater. Chem. C, 4, 727 (2016).
[35] X. Liu, H. Zhao, G. Dong, L. Duan, D. Li, L. Wang and Y. Qiu, “Multifunctional Organic Phototransistor-based Nonvolatile Memory Achieved by UV/Ozone Treatment of the Ta2O5 Gate Dielectric”, ACS Appl. Mater. Interfaces 6, 8337-8344 (2014).
[36] S. Lee, Y. Park, G. Yoo and J. Heo, “Wavelength-selective enhancement of photo-responsivity in metal-gated multi-layer MoS2 phototransistors”, Appl. Phys. Lett. 111, 223106 (2017).
[37] T. Han, L. Liu, M. Wei, C. Wang, X. Wu, Z. Xie and Y. Ma, “Light-activated electric bistability for evaporated silver nanoparticles in organic field-effect transistors”, Phys. Chem. 19. 17653 (2017).
[38] Z. Jia, J. Xiang, F. Wen, R. Yang, C. Hao and Z. Liu, “Enhanced Photoresponse of SnSe-Nanocrystals-Decorated WS2 Monolayer Phototransistor”, ACS Appl. Mater. Interfaces 8, 4781-4788 (2016).
[39] Y. J. Jeong, D. J. Yun, S. H. Kim, J. Jang and C. E. Park, “Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers”, ACS Appl. Mater. Interfaces 9, 11759-11769 (2017).
[40] S. W. Shin, J. E. Cho, H. M. Lee, J. S. Park and S. J. Kang, “Photoresponses of InSnGaO and InGaZnO thin-film transistors”, RSC Adv. 6, 83529 (2016).
[41] J. Li, L. Niu, Z. Zheng and F. Yan, “Photosensitive Graphene Transistors”, Adv. Mater. 26, 5239-5273 (2014).
[42] I. Karteri, S. Karatas and F. Yakuphanoglu, “Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators”, J. Mater. 27, 5284-5293 (2016).
[43] P. S. Shewale, N. K. Lee, S. H. Lee and Y. S. Yu, “Physical and UV photodetection properties of pulsed laser deposited Mg0.05Zn0.95O thin films: Effect of oxygen pressure”, Journal of Alloys and Compounds 640, 525-533 (2015).
[44] J. Zhuang, W. S. Lo, L. Zhou, Q. J. Sun, C. F. Chan, Y. Zhou, S. T. Han, Y. Yan, W. T. Wong, K. L. Wong and V. A. L. Roy, “Photo-reactive charge trapping memory based on lanthanide complex”, SCIENTIFIC REPORTS, 5:14998 (2015).
[45] S. Ghosh and D. Basak, “A simple process step for tuning the optical emission and ultraviolet photosensing properties of sol–gel ZnO film”, RSC Adv. 7. 694(2017).
[46] L. Wang, X. Chen, G. Wu, W. Guo, Y. Wang, S. Cao, K. Shang and W. Han, “Study on trapping center and trapping effect in MSM ultraviolet photo-detector on microcrystalline diamond film”, Phys. Status Solidi A 207, NO.2, 468-473 (2010).
[47] C. H. Ahn, W. J. Kang, Y. K. Kim, M. G. Yun and H. K. Cho, “Highly Repeatable and Recoverable Phototransistors Based on Multifunctional Channels of Photoactive CdS, Fast Charge Transporting ZnO, and Chemically Durable Al2O3 Layers”, ACS Appl. Mater. Interfaces 8, 15518-15523 (2016).
[48] J. S. Kim, Y. M. Kim, K. S. Jeong, H. J. Yun, S. D. Yang, S. H. Kim, J. U. An, Y. U. Ko and G. W. Lee, “A Light-induced Threshold Voltage Instability Based on a Negative-U Center in a-IGZO TFTs with Different Oxygen Flow Rates”, Transactions On Electrical And Electronic Material, vol. 15, No. 6, pp. 315-319 (2014).
[49] A. Dey, A. Singh, D. Das and P. K. Lyer, “Photosensitive organic field effect transistors: the influence of ZnPc morphology and bilayer dielectrics for achieving a low operating voltage and low bias stress effect”, Phys. Chem. 18, 32602 (2016).
[50] A. D. Mottram, Y. H. Lin, P. Pattansattayavong, K. Zhao, A. Amassian and T. D.
Anthopoulos, “Quasi Two-Dimensional Dye-Sensitized In2O3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications”, ACS Appl. Mater. Interfaces 8, 4894-4902 (2016).
[51] J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S. J. Choi, H. S. Kim and D. H. Kim, “Study on the Photoresponse of Amorphous In−Ga−Zn−O and Zinc Oxynitride Semiconductor Devices by the Extraction of Sub-Gap-State Distribution and Device Simulation”, ACS Appl. Mater. Interfaces 7, 15570-15577 (2015).
[52] K. Lee, M. S. Oh, S. Mun, K. H. Lee, T. W. Ha, J. H. Kim, S. H. K. Park, C. S.
Hwang, B. H. Lee, M. M. Sung and S. Im, “Interfacial Trap Density-of-States in Pentacene- and ZnO-Based Thin-Film Transistors Measured via Novel Photo-excited Charge-Collection Spectroscopy”, Adv. Mater. 22, 3260-3265 (2010).
[53] Y. Kang, H. H. Nahm and S. Han, “Light-Induced Peroxide Formation in ZnO: Origin of Persistent Photoconductivity”, Scientific Reports, 6:35148 (2016).
[54] H. Lee, J. Kim, J. Kim, S. K. Kim, Y. Lee, J. Y. Kim, J. T. Jang, J. Park, S. J.
Choi, D. H. Kim and D. M. Kim, “Investigation of Infrared Photo-Detection
Through Subgap Density-of-States in a-InGaZnO Thin-Film Transistors”, IEEE Electron Device Letters, Vol. 38 (2017).
[55] X. Liu, M. Zhang, G. Dong, X. Zhang, Y. Wang, L. Duan, L. Wang and Y. Qiu, “The effect of oxygen content on the performance of low-voltage organic phototransistor memory”, Organic Electronics 15, 1664-1674 (2014).
[56] Y. S. Rim, W. Jeong, B. D. Ahn and H. J. Kim, “Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing”, Appl. Phys. Lett. 102, 143503 (2013).
[57] N. E. Atab, F. Chowdhury, T. G. Ulusoy, A. Ghobadi, A. Nazirzadeh, A. K.
Okyay and A. Nayfeh, “~3-nm ZnO Nanoislands Deposition and Application in Charge Trapping Memory Grown by Single ALD Step”, Scientific Report, 6: 38712 (2016).
[58] S. J. Kim, W. H. Lee, C. W. Byun, C. S. Hwang and S. M. Yoon, “Photo-Stable Transparent Nonvolatile Memory Thin-Film Transistors Using In–Ga–Zn–O Channel and ZnO Charge-Trap Layers”, IEEE Electron Device Letters, Vol. 36, No. 11 (2015).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2028-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw