進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201813190300
論文名稱(中文) 精實地面定位系統設計與驗證
論文名稱(英文) Design and Verification of Lean Ground-based Positioning System
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 洪亞慈
研究生(英文) Ya-Tzu Hung
學號 N26054223
學位類別 碩士
語文別 英文
論文頁數 77頁
口試委員 指導教授-莊智清
口試委員-余國瑞
口試委員-壽鶴年
口試委員-李佩君
中文關鍵字 全球導航衛星系統  地面定位系統  定位演算法  軟體定義無線電 
英文關鍵字 Global navigation satellite system  Ground-based positioning system  Software-defined radio  Localization algorithm 
學科別分類
中文摘要 導航定位功能為現代化系統之一重要成分,隨著衛星導航系統之發展與普及,目前許多系統與設施均仰賴導航衛星所提供之定位、導航與授時服務。然而來自導航衛星之訊號相當微弱容易受到干擾,為補足衛星系統之限制,目前有許多建構於地面之定位系統,但考量到發展與架設等時間與成本,於特定情境時,目前缺乏獨立運作之即時定位機制。本研究參考精實製造之概念,減少發展成本與簡化系統架構,以發展一套精實地面定位系統技術,並進行系統架構設計及關鍵技術驗證。系統使用一接收機作為簡易之控制部門,於衛星導航訊號受到干擾之特殊情境,可快速佈署並提供室內或區域之獨立導航定位功能。於定位系統中,分為靜態物體之定位與移動物體之定位,本研究之整體目標著重在靜態物體定位分析與實現。

精實地面定位系統之關鍵技術包含使用分碼共享展頻之調變與定位演算法,以軟體定義無線電為平台,設計與開發發射機與接收機,並進行系統功能之驗證。所發展之系統於校園內進行定點定位之實驗。此些技術之建立、驗證與測試,以及系統之高彈性與機動性,將裨益於自主地面定位系統之發展亦有益於國土安全、防救災之應用。
英文摘要 Navigation and positioning play an important role in our society. With the availability of satellite-based navigation systems, many infrastructures have relied on global navigation satellite system to facilitate positioning, navigation, and timing services. The signals from navigation satellites are known to be relatively weak and highly susceptible to interference. To complement the limitation of GNSS system, several ground-based localization systems have been developed. However, considering the cost of development and deployment, there is a lack of means in providing reliable and accurate positioning service in a cost-effective manner. The objective of the thesis is to design a lean ground-based positioning system and develop key techniques that are essential to the system with a simple control segment. The system simplifies the structure and reduces the development cost. When the signals from navigation satellites are subject to interference, the system can provide indoor or local localization service. The thesis focuses on the positioning analysis and the verification of positioning performance. Several key technologies are developed in this system, including code division multiple access, spread spectrum, and localization algorithm. Based on the software-defined radio, the transmitters and receivers are developed. Simulations and experiments are then setup to verify the function and evaluate the performance. The feasibility and autonomy of the system will be highly beneficial to the design of the positioning system with applications in navigation, security, and disaster mitigation.
論文目次 摘要 I
Abstract II
致謝 IV
Contents V
List of Tables VII
List of Figures VIII
List of Abbreviations XI
Chapter 1 Introduction 1
1.1 Objectives 1
1.2 Literature Review 2
1.3 Contributions of the Thesis 4
1.4 Thesis Organization 5
Chapter 2 Positioning System 6
2.1 Lean Positioning System Structure 6
2.2 Spread Spectrum Modulation 13
2.3 Signal Front End 15
2.4 Acquisition 17
2.5 Tracking 20
2.5.1 Carrier Tracking 21
2.5.2 Code Tracking 22
2.6 Positioning 24
Chapter 3 Algorithms in the Positioning System 27
3.1 Carrier Smoothing 27
3.2 System Error 31
3.2.1 Monitoring of Clock Error 33
3.2.2 Positioning with Corrected Message 35
Chapter 4 Simulation and Analysis 37
4.1 Estimator Analysis 37
4.2 Simulation Results 38
Chapter 5 Experimental Results and Analysis 44
5.1 Experimental Structure and Environment 44
5.2 Experimental Results 54
5.2.1 Carrier Smoothing Results 54
5.2.2 Clock Error Analysis of Transmitters 57
5.2.3 Positioning Results 63
Chapter 6 Conclusion and Future Works 73
6.1 Summary 73
6.2 Future Works 73
Reference 75
參考文獻 [1] C. Chen, Y. Chen, Y. Han, H. Lai, and K. J. R. Liu, “Achieving centimeter accuracy indoor localization on Wi-Fi platforms: A frequency hopping approach,” IEEE Internet of Things Journal, vol. 4, no. 1, pp. 122–134, 2017.
[2] C. Chen, Y. Han, Y. Chen, and K. J. R. Liu, “Indoor global positioning system with centimeter accuracy using Wi-Fi,” IEEE Signal Process Magazine, vol. 33, no. 6, pp. 128–134, Nov. 2016.
[3] S. Sand, A. Dammann, and C. Mensing, Positioning in Wireless Communication Systems, John Wiley & Sons Ltd., 2014.
[4] S. C. Lo, B. B. Peterson, and P. Enge, “Loran data modulation: A primer,” IEEE Aerospace and Electronic Systems Magazine, vol. 22, no. 9, pp. 31–51, 2007.
[5] Enhanced Loran (eLoran) Definition Document, Available: https://www.loran.org/
[6] Y. J. Fan, Study of GPS/PL Integrated Navigation and Positioning, Master Thesis, Electrical Engineering, National Cheng Kung University, 2002.
[7] J. Wang, “Pseudolite applications in positioning and navigation: progress and problems,” Journal of Global Positioning Systems, vol. 1, no. 1, pp.48–56, 2002.
[8] S. Hwang and D. Yu, “Clock synchronization of pseudolite using time transfer technique based on GPS code measurement,” International Journal of Software Engineering and Its Applications, vol. 8, no. 4, pp. 35–40, 2014.
[9] C. Kim, H. So, T. Lee, and C. Kee, “A pseudolite-based positioning system for legacy GNSS receivers,” Sensors, vol. 14, no. 4, pp. 6104–6123, 2014.
[10] W. Zhang, Z. Yao, and M. Lu, “An improved pseudolite-based indoor positioning system compatible with GNSS,” 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services - Proceedings of IEEE UPINLBS 2016, pp. 43–50, 2016.
[11] Locata Corporation Technology Brief v8.0, Available: http://www.locata.com/wp-content/uploads/2014/07/Locata-Technology-Brief-v8-July-2014-Final1.pdf
[12] Locata Corporation Locata Signal Interface Control Document, Available: http://www.locata.com/wp-content/uploads/2014/07/Locata-ICD-100E.pdf
[13] J. Barnes, C. Rizos, J. Wang, D. Small, G. Voigt, and N. Gambale, “Locata: A new positioning technology for high precision indoor and outdoor positioning,” Ion Gpsgnss 2003, pp. 9–12, 2003.
[14] J. Barnes ,C. Rizos, M. Kanli,A. Pahwa, D. Small, G. Voigt, and J. Lamance, “High accuracy positioning using Locata’s next generation technology,” Proceedings of the 18th International Technical Meeting of The Institute of Navigation, pp. 2049–2056, 2005.
[15] CSRIC III Working Group 3, E9-1-1 Indoor Location Test Bed Report 2013, Available: http://transition.fcc.gov/bureaus/pshs/advisory/csric3/CSRIC_III_WG3_Report_March_%202013_ILTestBedReport.pdf
[16] NextNav Metropolitan Beacon System (MBS) ICD Version G1.0, Available: www.npstc.org
[17] G. Deshmukh, C. R. Patil, and M. G. Deshmukh, “Manufacturing industry performance based on lean production principles,” International Conference on Nascent Technologies in the Engineering Field, pp. 1–6, 2017.
[18] C. Leyh, S. Martin, and T. Schäffer, "Industry 4.0 and lean production – A Matching relationship? An analysis of selected Industry 4.0 models,” In: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, vol. 11, pp. 989–993, 2017.
[19] 莊智清, 衛星導航: 全華圖書, 2012.
[20] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen, A Software-defined GPS and Galileo Receiver: a Single-frequency Approach, Springer Science & Business Media, 2007.
[21] E. D. Kaplan. Understanding GPS : Principles and Applications, Boston :Artech House, 1996.
[22] E. A. Thompson, N. Clem, I. Renninger, and T. Loos, “Software-defined GPS receiver on USRP-platform,” Journal of Network and Computer Applications, vol. 35, pp. 1352–1360, 2012.
[23] I. Lucresi, A. DiCarlofelice, and P. Tognolatti, “SDR-based system for satellite ranging measurements,” IEEE Aerospace and Electronic Systems Magazine, vol. 31, pp. 8–13, 2016.
[24] D. Akopian and A. Soghoyan, “A LabVIEW-based fast prototyping software defined GPS receiver platform,” 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings, pp. 1230–1233, 2013.
[25] P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, Ganga-Jamuna Press, 2011.
[26] J. B. Y. Tsui, Fundamentals of Global Positioning System Receivers: A Software Approach: Second Edition, John Wiley & Sons, Inc., 2005.
[27] M. Pini, G. Falco, and L. Presti, “Estimation of Satellite-User Ranges Through GNSS Code Phase Measurements,” Global Navigation Satellite Systems, pp. 107, 2012.
[28] M. R. Mosavi, S. Azarshahi, I. Emamgholipour, and A. A. Abedi, “Least squares techniques for GPS receivers positioning filter using pseudo-range and carrier phase measurements,” Iranian Journal of Electrical and Electronic Engineering, vol. 10, no. 1, pp. 18–26, 2014.
[29] Z. Xiuqiang, Z. Xiumei, and C. Yan, “Implementation of carrier phase measurements in GPS software receivers,” Joint Conference of International Conference on Computational Problem-Solving and International High Speed Intelligent Communication Forum, vol 6, pp. 338–341, 2013.
[30] L. LoPresti and M. Visintin, “Can you list all the properties of the carrier-smoothing filter?,” Inside GNSS, pp. 32–37, 2015.
[31] P. Mark, “Why are carrier phase ambiguities integer ?” GNSS Solutions, pp. 36–38, 2015.
[32] D. Yang, “GPS pseudorange and Cramer Rao lower bound assisted cooperative vehicular localization,” International Conference on Connected Vehicles and Expo, ICCVE 2013 - Proceedings, pp. 252–256, 2013.
[33] C. Chang and A. Sahai, “Cramér-Rao-type bounds for localization,” Eurasip Journal on Applied Signal Processing, pp. 1–13, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw