進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201812120700
論文名稱(中文) 最佳焙燒條件生質炭與煤炭之混燒特性
論文名稱(英文) Co-Firing Characteristics of Coal Blended with Biochar with Optimal Torrefaction Condition
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 蕭楷潾
研究生(英文) Kai-Lin Xiao
學號 P46051092
學位類別 碩士
語文別 英文
論文頁數 88頁
口試委員 口試委員-陳冠邦
口試委員-黃朝偉
口試委員-許聖彥
指導教授-李約亨
中文關鍵字 焙燒  田口法  混燒  單顆燃燒  粉煤燃燒 
英文關鍵字 Torrefaction  the Taguchi method  cofiring  single pellet combustion  pulverized coal combustion 
學科別分類
中文摘要 在本篇研究中,將進行生質料焙燒條件最佳化之探討,並且透過產製的生質炭與煤炭混燒進行研究。在最佳化方面,田口法被廣泛應用於工程領域。透過正規直交表的建立,大幅減少實驗時間與成本。此外,為了依據不同燃燒器需求找出合適的焙燒條件,本研究根據燃料的燃燒特性建立了三個最佳化指標。透過三個最佳化焙燒條件所產製的生質炭,分別以25%、50%和75%的混摻比例與煤炭進行混燒。混燒期間,利用單顆燃燒爐及粉煤燃燒器將燃料以顆粒型態及粉煤型態進行燃燒現象探討。燃料在單顆燃燒爐受到高溫環境(600℃和800℃)影響,燃料首先會進行水分揮發及脫揮發份反應。當揮發氣體逐漸受到高溫被釋放出後,燃料將執行燃燒現象,分別是氣相燃燒及焦炭燃燒,直到整個燃燒反應結束,便殘留灰燼殘在不銹鋼網中。當燃料以粉煤型態在粉煤燃燒器執行混燒時,我們透過量測溫度、燃燒效率、火焰外型及廢氣來比較不同焙燒條件下燃燒現象的差異。根據粉煤實驗結果,我們發現焙燒程度較低的生質炭有較佳的燃燒效率。而焙燒程度較高的生質炭其火焰穩定性則相對穩定,其燃燒現象也與煤炭較接近。另外,添加生質炭能幫助燃料的點燃。本實驗的研究成果,在未來可當作生質料焙燒條件最佳化的依據。並且根據不同燃燒器需求來挑選適合的指標及混摻比例。
英文摘要 In this study, the main purpose is to investigate the combustion behavior of biomass and coal cofiring by optimizing biomass torrefaction condition. It provides an optimal approach and guideline for selecting the optimal torrefaction condition for biomass cofiring. The Taguchi method was used for the parameter optimization of biomass torrefaction in terms of torrefied temperature, N2 flow rate, and residence time. Regarding the S/N ratio evaluation, three indicators based on distinct combustion-relevant features were proposed to be the optimization goal of the Taguchi method. The biochar, made by three optimal torrefaction conditions, partially mixed with pulverized coal at different blending ratios (25%, 50%, and 75%) for carrying out biomass cofiring experiment. In addition, the single pellet combustion and the pulverized coal/biochar combustion were performed to observe the combustion behavior of various fuels. According to those results, the biochar with low torrefied degree has higher overall combustion efficiency but worst combustion stabilization in the pulverized coal boiler. As the torrefaction degree of biomass increased, the fuel characteristics of biochar are similar to coal, and the combustion stabilization is further improved. In the period of single pellet burning, the addition of the biochar in coal can enhance the ignition ability effectively. The flame temperature distribution, elapsed time for various combustion stages, pollutant emission, overall combustion efficiency and flame height were measured and discussed. In addition, a spray combustion system was established to examine the combustion characteristics of torrefied biochar compared with coal in terms of flame temperature and gas emission. The results of the pulverized coal combustion presented that the biochar with S index case and PB index case have similar combustion behaviors. Once the BBR is above 50%, the volatile burning time increases. In addition, all cases of BBR above 50% are better in the overall combustion efficiency, but worst in combustion stabilization for the pulverized coal boiler.
論文目次 摘要 I
Abstract II
致謝 IV
Contents V
List of Tables VII
List of Figures VIII
Nomenclature X
Chapter 1 Introduction 1
1.1 Renewable Energy 1
1.2 Utilization of Biomass 3
1.3 Biomass Cofiring and Torrefaction 6
1.4 Solid Fuel Combustion 11
1.4.1 Pyrolysis 13
1.4.2 Volatiles Oxidation 14
1.4.3 Char reactions 15
1.5 The Taguchi Method 16
1.6 Motivation 17
1.7 Objective 18
Chapter 2 Experimental Apparatus and Method 20
2.1 Experimental Apparatus and Process 20
2.1.1 Materials 20
2.1.2 Calorimeter 21
2.1.3 Elemental analysis 23
2.1.4 Tubular Furnace 24
2.1.5 Thermogravimetric Analyzer 26
2.1.6 Single Pellet Combustor 30
2.1.7 Laboratory-Scale Coal Burner 32
2.2 Optimization Method 35
2.3 Operational Procedure 38
Chapter 3 Optimization of Torrefaction Conditions 40
3.1 Selection of optimization indicator 40
3.2 Fuel Characteristic Measurement 41
3.3 Signal-to-Noise Ratio 45
3.4 Confirmation Experiment 48
Chapter 4 Combustion Characteristics of Torrefied Biochar 50
4.1 Single Pellet Combustion 50
4.1.1 Phenomena Observation 50
4.1.2 Comparison of Combustion Stages for Various Fuels 58
4.1.2.1 Single Pellet Combustion at Various Furnace Temperatures 58
4.1.2.2 Single Pellet Combustion at Various Blending Ratios 62
4.2 Pulverized Coal Combustion 65
4.2.1 Function of a Conical Obstacle 65
4.2.2 Mean Temperature Distribution of Coal and Biochar 70
4.2.3 Flame Form and Emission Gases Measurement 73
4.2.4 Overall Combustion Efficiency 78
Chapter 5 Conclusions 81
References 86

參考文獻 [1] Council WE. World Energy Resources. 2016.
[2] UNFCCC. Adoption of the Paris agreement. 2015.
[3] Agency NEA. CO2 time series 1990-2015 per capita for world countries. 2017.
[4] Energy supply. Ministy Of Economic Affairs. 2016.
[5] https://www.iea.org/topics/renewables/bioenergy/.
[6] Jhang JA, Liou DH. 生物質能源利用技術. 2008.
[7] Quaschning V. Regenerative Energiesysteme.
[8] Basu P. Biomass Gasification, Pyrolysis and Torrefaction-Practical Design and Theory: Elsevier; 2013.
[9] Liu H, Gibbs BM, Hampartsoumian. The significance of rank on coal reburning for the reduction of NO in drop tube furnace. 8th International Symposium on Transport phenomena in combustion. 1995.
[10] Fahlstedt I, Lindman E, Lindberg T, Anderson J. Co-firing of biomass and coal in a pressurized fluidised bed combined cycle. Proceedings of the 14th International Conference on Fluidized Bed Combustion in Vancouver. 1997:295-9.
[11] Andries J, Verloop M, Hein K. Co-combustion of coal and biomass in a pressurized bubbling fluidized bed. Proceedings of the 14th International Conference on Fluidized Bed Combustion in Vancouver. 1997;1:313-20.
[12] Aerts DJ, Bryden KM, Hoerning JM, Ragland KW. Co-firing switchgrass in a 50 MW pulverized coal boiler. Proceedings of the 59th Annual American Power Conference. 1997:1180-5.
[13] Armesto L, Cabanillas A, Bahillo A, Segovia JJ, Escalada R, Martinez JM, Carrasco JE. Coal and biomass co-combustion on fluidized bed: comparison of circulating and bubbling fluidized bed technologies. Proceedings of the 14th International Conference on Fluidized Bed Combustion in Vancouver. 1997;1:301-9.
[14] http://www.engineering-timelines.com/scripts/engineeringItem.asp?id=979.
[15] https://bester.energy/en/blog/plantas-biomasa-mas-grandes-del-mundo/
[16] Willeboer W. Status and future of Essent's biomass activities. 2012.
[17] http://tech.nikkeibp.co.jp/dm/atclen/news_en/15mk/010601060/?ST=msbe.
[18] Jeguirim M, Dorge S, Loth A, Trouvé G. Devolatilization kinetics of Miscanthus straw from thermogravimetric analysis. International Journal of Green Energy. 2010:164-73.
[19] Wilk M, Magdziarz A. Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy. 2017:1-13.
[20] Bergman PCA, Boersma AR, Zwart RWR, Kiel JHA. Torrefaction for biomass co-firing in existing coal-fired power stations. 2005.
[21] Chen WH, Kuo PC. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy. 2010;35:2580-6.
[22] Wilk M, Magdziarz A, Kalemba I. Characterisation of renewable fuels' torrefaction process with different instrumental techniques. Energy. 2015;87:259-69.
[23] Xue G, Kwapinska M, Kwapinski W, Czajka KM, Kennedy J. Impact of torrefaction on properties of Miscanthus giganteus relevant to gasification. Fuel. 2014;121:189-97.
[24] Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology. 2011;102:1246-53.
[25] Jones JM, Nawaz M, Darvell LI, Ross AB, Pourkashanian M, Williams A. Towards biomass classification for energy applications.” Science in Thermal and Chemical Biomass Conversion. 2006;1:331-9.
[26] Sami M, Annamalai K, Wooldridge M. Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science. 2001;27:171-214.
[27] Piriou B, Vaitilingom G, Veyssiere B, Cuq B, Rouau X. Potential direct use of solid biomass in internal combustion engines. Progress in Energy and Combustion Science. 2013;39:169-88.
[28] Tillman DA, Rossi AJ, Kitto WD. Wood combustion: principles, processes and economics. Academic Press. 1981.
[29] Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews. 2011;15:2262-89.
[30] Demirbas A. Calculation of higher heating values of biomass fuels. Fuel. 1996;76:431-4.
[31] Erol M, Haykiri-Acma H, kbayrak S. Calorific value estimation of biomass from their proximate analyses data. Renew Energy. 2010;35:170-3.
[32] Ross PJ. Taguchi Techniques for Quality Engineering. Mcgraw-hill book company1988.
[33] Ghani JA, Choudhury IA, Hassan HH. Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology. 2004;145:84-92.
[34] Yang WH, Tarng YS. Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology. 1998;84:122-9.
[35] Chan YH, Dang KV, Yusup S, Lim MT, Zain AM, Uemura Y. Studies on catalytic pyrolysis of empty fruit bunch using Taguchi's L9 Orthogonal Array. Journal of the Energy Institute. 2014;87:227-34.
[36] Chen WH, Chen CJ, Hung CI. Taguchi approach for co-gasification optimization of torrefied biomass and coal. Bioresource Technology. 2013;144:615-22.
[37] Adu-Gyamfi N, RaoRavella S, J.Hobbs P. Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production. Bioresource Technology. 2012;120:248-55.
[38] Annamalai K, Thien B, Sweetenb J. Co-firing of coal and cattle feedlot biomass (FB) fuels. Part II. Performance results from 30 kWt (100,000) BTU/h laboratory scale boiler burner. Fuel. 2003;82:1183-93.
[39] Lu R, Purushothama S, Yang X, Hyatt J, Pan WP, Riley JT, Lloyd WG. TG/FTIR/MS study of organic compounds evolved during the co-firing of coal and refuse-derived fuels. Fuel Processing Technology. 1999;59:35-50.
[40] Brosse N, Dufour A, Meng X, Sun Q, Ragaukas A. Miscanthus: a fast growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin. 2012;6:580-98.
[41] Jones MB, Walsh M. Miscanthus for energy and fibre: Earthscan; 2001.
[42] Dondini M, Hastings A, Saiz G, Jones MB, Smith P. The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy. 2010;1.
[43] Company TP. Coal purchase situation from Taiwan Power Company. 2015.
[44] Available from: https://www.h2tools.org/hyarc/calculator-tools/lower-and-higher-heating-values-fuels.
[45] Zeng HC, Yao B, Qii JR. Studies of combustion and slagging characteristics of anthracite blends with bituminous coal. Ranshao Kexue Yu Jishu. 1996;2:181-9.
[46] Qiu SH, Wang ZY. Analysis of combustion properties of mixed coal. Shandong Jiancai Xueyuan Xuebao. 1997;11:27-31.
[47] Lua JJ, Chen WH. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy. 2015;160:49-57.
[48] Ren X, Meng J, Moorea AM, Chang J, Goub J, Park S. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils. Bioresource Technology. 2014;152:267-74.
[49] Shan F, Lin Q, Zhou K, Wu Y, Fu W, Zhang P, et al. An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel. Fuel. 2017;188:277-84.
[50] Balusamy S, Kamal MM, Lowe SM, Tian B, Gao Y, Hochgreb S. Laser diagnostics of pulverized coal combustion in O2/N2 and O2/CO2 conditions: velocity and scalar field measurements. Experiments in Fluids. 2015;26:108.
[51] Basu P. Combustion and Gasification in Fluidized Beds: CRC Press; 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw