進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201716005600
論文名稱(中文) 以觸媒陶瓷纖維過濾(CCFF)降低柴油引擎煙道廢氣中傳統污染物及戴奧辛之排放
論文名稱(英文) Reduction of Traditional Pollutants and PCDD/Fs in the Flue Gas of a Diesel-Fueled Engine by Employing Catalytic Ceramic Fiber Filter (CCFF)
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 倪芮
研究生(英文) Ria Aniza
學號 P56057058
學位類別 碩士
語文別 英文
論文頁數 68頁
口試委員 指導教授-李文智
口試委員-林聖倫
口試委員-賴怡潔
口試委員-王琳麒
中文關鍵字 關鍵字:戴奧辛  顆粒物質  觸媒陶瓷纖維過濾  去除率  引擎發電機 
英文關鍵字 Keyword: dioxins  particulate matter  catalytic ceramic fiber filter  removal efficiency  engine generator 
學科別分類
中文摘要 部分傳統系統被設計用來處理戴奧辛/呋喃(PCDD/Fs) 及煙道氣中眾所皆知的戴奧辛及顆粒。最為廣泛使用的是活性碳注入式濾袋器(ACI-BF),其有高去除率(RE),但只去除並非毀壞污染物。另一個受歡迎的處理系統是靜電集塵-選擇性觸媒還原系統(ESP-SCR),其可以捕捉顆粒物質及氧化PCDD/Fs。不幸地,在長期操作下,催化劑容易因硫和金屬而失去活性。觸媒纖維過濾因此而被發明,其過濾器表面附著薄催化層以降低顆粒物質及PCDD/Fs。雖然其有較高之去除率,但仍有催化劑失活問題產生。因此,本研究試著在150-350〬C下,將V2O5/TiO2均勻填充在陶瓷纖維之間,形成自我保護之觸媒陶瓷纖維過濾,以處理柴油引擎發電機的排放物。最高的PCDD/Fs去除率在175〬C下為99.4%。然而,一開始的合成發生在250-350〬C之間,因而降低了去除率。此外,在不同溫度下,顆粒物質的去除率高達94.4-98.5%,但CO和NOX的去除率分別只大於90%和70%。因此,觸媒陶瓷纖維過濾在特定操作條件下可以有效抑制煙道氣中的其他成分及PCDD/Fs排放物。
英文摘要 Several technology was designed to treating the hazardous gasses and particle as polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofurans (PCDD/Fs) or as well-known as Dioxin and particulate matter (PM) and also the traditional gasses of flue gas from heavy-duty diesel engine. The most widely used are activated carbon-bag house injection filtration (ACI-BF), electrostatic precipitator (EP), selective catalytic reduction (SCR), combining EP-SCR and so on, which have been proven as a good abatement that reached a high level of removal efficiency, however those were only removing instead destroying both emission, also in the end of employing those technology, then demands other treatment beyond it. Thus, are costly treatments, hence catalytic-based technology has been developing to be able to control both emission gaseous and particulate phase. Ceramic catalytic fiber filter (CCFF) is trying to take a part of it. Additionally, it has been designed in two functions, which are suitable to treat diphase emission, are gaseous and particle. CCFF is a combined-technology of both catalytic-based and filtration-based. Fiber and catalyst substance are a based-materials which used in CCFF. Vanadium oxide and titanium oxide (V2O5/TiO5) is a good combination, yet low costly that have been trusted as the main items within the catalyst. This study is tried to investigating the performance of CCFF at 150–350°C, the highest removal efficiency (RE) of PCDD/Fs I-TEQ was 99.4% at 175°C, and nonetheless at 250–350 ° C a de novo synthesis followed and change RE value. Furthermore, RE of PM reached 94.4–98.5%, while those of CO and NOx were >90% and >70% at different temperatures.
Thus, CCFF could be effective to treat other emission in flue gas, yet as a consequent at certain operation temperature.
論文目次 Contents
摘要 i
Abstract ii
Acknowledgements iv
Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 2
1.3 Overview 3
Chapter 2 Literature Review 4
2.1 PCDD/Fs 4
2.1.1. Overview of PCDD/Fs 4
2.1.2. Characteristic of PCDD/Fs 5
2.1.3. Properties of PCDD/Fs 5
2.1.4. Formation pathway of PCDD/Fs 6
2.1.5. Sources of PCDD/Fs and other gaseous production 8
2.2 Catalyst as the abatement technology for PCDD/Fs 9
Chapter 3 Methodology 13
3.1 Study Design 13
3.2 Methodology for implementation the performance of Catalyst Ceramic Fiber Filter (CCFF) 17
3.2.1. Materials and equipment 17
3.3 Experimental set-up 17
3.3.1. Monitoring performance of heavy-duty diesel engine 19
3.3.2. Sampling and analysis of PCDD/Fs 21
Chapter 4 Results and Discussion 25
4.1 Performance of heavy-duty diesel engine 25
4.2 Flue gas production during the combustion processing 27
4.3 Removal efficiency of other components (CO, CO2, NOx, O2, and PM) 28
4.4 Removal efficiency of PCDD/Fs 33
4.4.1. Removal efficiency of PCDD/Fs in particulate phase 34
4.4.2. Removal I-TEQ level of PCDD/Fs in particulate phase 43
4.4.3. Removal efficiency of PCDD/Fs gaseous phase 47
4.4.4. Removal I-TEQ level of PCDD/Fs in gaseous phase 54
4.5 Particulate and gaseous phase of PCDD/Fs 56
Chapter 5 Conclusions and Suggestions 59
5.1 Conclusions 59
5.2 Suggestions 60
References 61
Autobiography 68

參考文獻 Abdelaal, M. M. and Hegab, A. H. (2012) ‘Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR’, Energy Conversion and Management. Elsevier Ltd, 64, pp. 301–312. doi: 10.1016/j.enconman.2012.05.021.
Altarawneh, M. et al. (2009) ‘Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)’, Progress in Energy and Combustion Science. Elsevier Ltd, 35(3), pp. 245–274. doi: 10.1016/j.pecs.2008.12.001.
Arnby, K., Törncrona, A. and Skoglundh, M. (2004) ‘Influence of ammonia on CO and methanol oxidation over Pt / ␥ -Al 2 O 3 catalysts modified by Mg’, 49, pp. 51–59. doi: 10.1016/j.apcatb.2003.11.016.
Baker, J. I. and Hites, R. A. (2000) ‘Is combustion the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans to the environment? A mass balance investigation’, Environmental Science and Technology, 34(14), pp. 2879–2886. doi: 10.1021/es9912325.
Bayraktar, H. (2008) ‘An experimental study on the performance parameters of an experimental CI engine fueled with diesel-methanol-dodecanol blends’, Fuel, 87(2), pp. 158–164. doi: 10.1016/j.fuel.2007.04.021.
Becker, L. and Forster, H. (1997) ‘Oxidative Decomposition of Chlorobenzene Catalyzed by Palladium-Containing Zeolite Y’, Journal of Catalysis, 170, pp. 200–203.
Bertazzi, P. A. et al. (2001) ‘Health effects of dioxin exposure: A 20-year mortality study’, American Journal of Epidemiology, 153(11), pp. 1031–1044. doi: 10.1093/aje/153.11.1031.
Van Den Brink, R. W. et al. (2000) ‘The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts’, Applied Catalysis B: Environmental, 24(3–4), pp. 255–264. doi: 10.1016/S0926-3373(99)00113-7.
Chang, Y. et al. (2014) ‘Use of water containing acetone e butanol e ethanol for NO x -PM ( nitrogen oxide-particulate matter ) trade-off in the diesel engine fueled with biodiesel’, Energy. Elsevier Ltd, 64(x), pp. 678–687. doi: 10.1016/j.energy.2013.10.077.
Chen, L., Li, J. and Ge, M. (2011) ‘The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3’, Chemical Engineering Journal. Elsevier B.V., 170(2–3), pp. 531–537. doi: 10.1016/j.cej.2010.11.020.
Choi, K. I. et al. (2007) ‘The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators’, Chemosphere, 66(6), pp. 1131–1137. doi: 10.1016/j.chemosphere.2006.06.019.
Chuang, S. C. et al. (2010) ‘Gas/particle partitioning of dioxins in exhaust gases from automobiles’, Aerosol and Air Quality Research, 10(5), pp. 489–496. doi: 10.4209/aaqr.2010.04.0028.
Compounds, R. (2003) ‘Exposure and Human Health Reassessment’, (December).
Czuczwa, J. M., Mcveety, B. D. and Hites, R. A. (1984) ‘Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Sediments from Siskiwit Lake, Isle Royale’, Science, 226(4674), p. 568 LP-569. Available at: http://science.sciencemag.org/content/226/4674/568.abstract.
Debecker, D. P. et al. (2007) ‘On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furan vs. chlorobenzene’, Applied Catalysis B: Environmental, 74(3–4), pp. 223–232. doi: 10.1016/j.apcatb.2007.02.016.
Ferrario, J. B., Byrne, C. J. and Cleverly, D. H. (2000) ‘2,3,7,8-dibenzo-p-dioxins in mined clay products from the United States: Evidence for possible natural origin’, Environmental Science & Technology, 34(21), pp. 4524–4532. doi: 10.1021/es001052r.
Finocchio, E., Busca, G. and Notaro, M. (2006) ‘A review of catalytic processes for the destruction of PCDD and PCDF from waste gases’, Applied Catalysis B: Environmental, 62(1–2), pp. 12–20. doi: 10.1016/j.apcatb.2005.06.010.
Gross, M. L. et al. (1984) ‘2,3,7,8-tetrachlorodibenzo-p-dioxin in adipose tissue of Vietnam veterans’, Environmental Research, 33, pp. 261–268.
Guliants, V. V. (1999) ‘Structure–reactivity relationships in oxidation of C4 hydrocarbons on supported vanadia catalysts’, Catalysis Today, 51(2), pp. 255–268. doi: 10.1016/S0920-5861(99)00049-8.
Heo, I. et al. (2011) ‘Microporous and Mesoporous Materials Effect of hydrocarbon slip on NO removal activity of CuZSM5 , FeZSM5 and V 2 O 5 / TiO 2 catalysts by NH 3 q’, Microporous and Mesoporous Materials. Elsevier Inc., 141(1–3), pp. 8–15. doi: 10.1016/j.micromeso.2010.02.005.
Hsu, W. T., Hung, P. C. and Chang, M. B. (2015) ‘Catalytic destruction vs. adsorption in controlling dioxin emission’, Waste Management. Elsevier Ltd, 46, pp. 257–264. doi: 10.1016/j.wasman.2015.09.002.
Jarmohamed, W. (1994) ‘Pergamon Center for Chemistry and the Environment , Gorlaens Laboratories , Leiden University , P . O . Box 9502 , 2300 RA Leiden , The Netherlands . Kevwords Fly ash , Propene , Formation , Polychlorinated benzenes , mono- and dibenzofurans , dibenzodiox’, 29(94), pp. 1911–1917.
Jhang, S. et al. (2016) ‘Reducing pollutant emissions from a heavy-duty diesel engine by using hydrogen additions’, FUEL. Elsevier Ltd, 172, pp. 89–95. doi: 10.1016/j.fuel.2016.01.032.
Ji, S. et al. (2014) ‘Treating PCDD/Fs by combined catalysis and activated carbon adsorption’, Chemosphere, 102, pp. 31–36. doi: 10.1016/j.chemosphere.2013.12.008.
Klimczak, M. et al. (2010) ‘High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts-Part I: V2O5-WO3/TiO2 catalysts’, Applied Catalysis B: Environmental, 95(1–2), pp. 39–47. doi: 10.1016/j.apcatb.2009.12.007.
Koˇ, P. (2010) ‘Investigation of combined DOC and NSRC diesel car exhaust catalysts’, 34(x), pp. 744–752. doi: 10.1016/j.compchemeng.2010.01.003.
Krishnamoorthy, S. and Amiridis, M. D. (1999) ‘Kinetic and in situ FTIR studies of the catalytic oxidation O-DCB over V2O5/Al2O3’, Catalysis Today, 51, pp. 203–214.
Krishnamoorthy, S., Baker, J. P. and Amiridis, M. D. (1998) ‘Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts’, Catalysis Today, 40(1), pp. 39–46. doi: 10.1016/S0920-5861(97)00117-X.
Kulkarni, P. S., Crespo, J. G. and Afonso, C. A. M. (2008) ‘Dioxins sources and current remediation technologies - A review’, Environment International, 34(1), pp. 139–153. doi: 10.1016/j.envint.2007.07.009.
Kustov, A. L. et al. (2007) ‘Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases’, Applied Catalysis B: Environmental, 76(1–2), pp. 9–14. doi: 10.1016/j.apcatb.2007.05.004.
Lee, W. et al. (2011) ‘Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol e biodiesel e diesel blend of fuels’, Energy. Elsevier Ltd, 36(9), pp. 5591–5599. doi: 10.1016/j.energy.2011.07.012.
Lee, W.-S. (2003) ‘Emissions of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans from the Incinerations of Both Medical and Municipal Solid Wastes’, Aerosol and Air Quality Research, 3(1), pp. 1–6. doi: 10.4209/aaqr.2003.06.0001.
Li, X. et al. (2016) ‘Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen’, Applied Catalysis B: Environmental. Elsevier B.V., 184, pp. 246–257. doi: 10.1016/j.apcatb.2015.11.042.
Liljelind, P. et al. (2001) ‘Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction’, Chemosphere, 42(5–7), pp. 615–623. doi: 10.1016/S0045-6535(00)00235-6.
Lin, S. et al. (2012) ‘Reduction in emissions of nitrogen oxides , particulate matter , and polycyclic aromatic hydrocarbon by adding water-containing butanol into a diesel-fueled engine generator’, Fuel. Elsevier Ltd, 93, pp. 364–372. doi: 10.1016/j.fuel.2011.11.042.
Lin, Y., Hsu, K. and Chen, C. (2011) ‘Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel / ultra-low sulfur diesel blends’, Energy. Elsevier Ltd, 36(1), pp. 241–248. doi: 10.1016/j.energy.2010.10.045.
Liu, J. et al. (2013) ‘Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing’, Applied Energy. Elsevier Ltd, 110(x), pp. 201–206. doi: 10.1016/j.apenergy.2013.03.024.
Liu, Y. (2001) ‘Oxidative Destruction of Chlorobenzene and o-Dichlorobenzene on a Highly Active Catalyst: MnOx/TiO2–Al2O3’, Journal of Catalysis, 202, pp. 200–204. doi: 10.1006/jcat.2001.3284.
Liu, Y. et al. (2016) ‘Chemical deactivation of commercial vanadium SCR catalysts in diesel emission control application’, Chemical Engineering Journal. Elsevier B.V., 287, pp. 680–690. doi: 10.1016/j.cej.2015.11.043.
Liu, Z. G. et al. (2011) ‘Investigation of PCDD/F emissions from mobile source diesel engines: Impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations’, Environmental Science and Technology, 45(7), pp. 2965–2972. doi: 10.1021/es103933e.
Lustenhouwer, J. W. A., Olie, K. and Hutzinger, O. (1980) ‘Chlorinated dibenzo-p-dioxins and related compounds in incinerator effluents. A review of measurements and mechanisms of formation’, Chemosphere, 9(7–8), pp. 501–522. doi: 10.1016/0045-6535(80)90035-1.
Masuda, Y. et al. (1985) ‘PCB and PCDF congeners in the blood and tissues of yusho and yu-cheng patients’, Environ Health Perspect, 59, pp. 53–58. Available at: https://www.ncbi.nlm.nih.gov/pubmed/3921365.
Olie, K., Vermeulen, P. L. and Hutzinger, O. (1977) ‘Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in The Netherlands’, Chemosphere, 6(8), pp. 455–459. doi: 10.1016/0045-6535(77)90035-2.
Papagiannakis, R. G. and Hountalas, D. T. (2004) ‘Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas’, Energy Conversion and Management, 45(18–19), pp. 2971–2987. doi: 10.1016/j.enconman.2004.01.013.
Reggiani, G. (1979) ‘Seveso’, Nature, 277(5694), p. 260. doi: DOI 10.1038/277260c0.
Rey, M. D., Font, R. and Aracil, I. (2014) ‘PCDD/F emissions from light-duty diesel vehicles operated under highway conditions and a diesel-engine based power generator’, Journal of Hazardous Materials. Elsevier B.V., 278, pp. 116–123. doi: 10.1016/j.jhazmat.2014.05.101.
Rordorf, B. F. (1989) ‘Prediction of vapor pressures, boiling points and enthalpies of fusion for twenty-nine halogenated dibenzo-p-dioxins and fifty-five dibenzofurans by a vapor pressure correlation method’, Chemosphere, 18(1–6), pp. 783–788. doi: 10.1016/0045-6535(89)90196-3.
Schecter, A. et al. (1998) ‘A comparison of dioxins, dibenzofurans and coplanar PCBS in uncooked and broiled ground beef, catfish and bacon’, Chemosphere. Pergamon, 37(9), pp. 1723–1730. doi: 10.1016/S0045-6535(98)00237-9.
Schecter, A. et al. (2003) ‘Food as a Source of Dioxin Exposure in the Residents of Bien Hoa City, Vietnam’, Journal of Occupational and Environmental Medicine, 45(8), pp. 781–788. Available at: http://journals.lww.com/joem/Fulltext/2003/08000/Food_as_a_Source_of_Dioxin_Exposure_in_the.3.aspx.
Schecter, A. et al. (2006) ‘Dioxins: An overview’, Environmental Research, 101(3), pp. 419–428. doi: 10.1016/j.envres.2005.12.003.
Smith, R. M. et al. (1983) ‘2,3,7,8-Tetrachlorodibenzo-Para-Dioxin in Sediment Samples from Love Canal Storm Sewers and Creeks’, Environmental Science & Technology, 17(1), pp. 6–10. doi: DOI 10.1021/es00107a004.
Stanmore, B. R. (2004) ‘The formation of dioxins in combustion systems’, Combustion and Flame, 136(3), pp. 398–427. doi: 10.1016/j.combustflame.2003.11.004.
Stieglitz, L. (1998) ‘Topics the De Novo Synthesis of’, Environmental Ebgineering Science, 15(1).
Tame, N. W., Dlugogorski, B. Z. and Kennedy, E. M. (2007) ‘Formation of dioxins and furans during combustion of treated wood’, Progress in Energy and Combustion Science, 33(4), pp. 384–408. doi: 10.1016/j.pecs.2007.01.001.
Tutak, W. et al. (2015) ‘Alcohol-diesel fuel combustion in the compression ignition engine’, Fuel. Elsevier Ltd, 154, pp. 196–206. doi: 10.1016/j.fuel.2015.03.071.
Wachs, I. E. and Weckhuysen, B. M. (1997) ‘Structure and reactivity of surface vanadium oxide species on oxide supports’, Applied Catalysis A: General, 157(1–2), pp. 67–90. doi: 10.1016/S0926-860X(97)00021-5.
Wang, Y., Liu, H. and Lee, C.-F. F. (2016) ‘Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending: A review’, Renewable and Sustainable Energy Reviews. Elsevier, 64, pp. 569–581. doi: 10.1016/j.rser.2016.06.062.
Weber, R., Sakurai, T. and Hagenmaier, H. (1999) ‘Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts’, Applied Catalysis B: Environmental, 20(4), pp. 249–256. doi: 10.1016/S0926-3373(98)00115-5.
Wei-Shan Lee , Guo-Ping Chang-Chien, Shui-Jen Chen , Lin-Chi Wang, Wen-Jhy Lee, Y.-H. W. (2004) ‘Removal of Polychlorinated Dibenzo- p -dioxins and Dibenzofurans in Flue Gases by Venturi Scrubber and Bag Filter’, Aerosol and Air Quality, 4(1), pp. 27–37.
Yang, C. C. et al. (2008) ‘Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts’, Chemosphere, 73(6), pp. 890–895. doi: 10.1016/j.chemosphere.2008.07.027.
Yim, S. D., Koh, D. J. and Nam, I. (2002) ‘A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts’, Catalysis today, 75(1–4), pp. 269–276.
Zheng, Y. et al. (2008) ‘Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by lab- and pilot-scale experiments’, Applied Catalysis B: Environmental, 83(3–4), pp. 186–194. doi: 10.1016/j.apcatb.2008.02.019.Zhu, H. et al. (2013) ‘Effect of fuel oxygen on the trade-offs between soot , NO x and combustion efficiency in premixed low-temperature diesel engine combustion’, FUEL. Elsevier Ltd, 112(x), pp. 459–465. doi: 10.1016/j.fuel.2013.05.023.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw