進階搜尋


下載電子全文  
系統識別號 U0026-1408201713244700
論文名稱(中文) 基於量子干涉之高效率反向共振四波混頻
論文名稱(英文) High-efficiency backward resonant four-wave mixing by quantum interference
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 105
學期 2
出版年 106
研究生(中文) 蕭建庭
研究生(英文) Jian-Ting Xiao
學號 L26044218
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 指導教授-陳泳帆
口試委員-余怡德
口試委員-周忠憲
中文關鍵字 四波混頻  冷原子  光學幫浦 
英文關鍵字 four-wave mixing  cold atoms  optical pumping 
學科別分類
中文摘要 正向共振四波混頻在雙Λ架設下,由於無法避免的自發輻射影響,有著轉換效率25%的上限。本論文中證明在使用反向配置雷射的情況下能夠有效的壓抑自發輻射,在反向雙Λ的系統中,在光學密度48的實驗條件下,得到的四波混頻轉換效率可以達到63.3%。根據理論預測,反向四波混頻在光學密度約500時有著接近100%的轉換效率,如此高效率的頻率轉換在全光學量子信號處理中有著潛在的應用性。此外,實驗中成功利用光學幫浦準備集中度95.8% 的單一賽曼態。在高光學密度的條件下,觀察到輻射捕捉效應對於居量集中的破壞。
英文摘要 Resonant four-wave mixing(FWM)based on a double-Λ scheme has a maximum conversion efficiency (CE) of 25% due to unavoidable spontaneous emission. Here, we demonstrate the spontaneous emission can be greatly suppressed by arranging the applied laser beams with a backward configuration. With the backward double-Λ scheme, we observe the FWM efficiency can reach 63.3% in cold rubidium atoms with an optical depth of 48, which is the first observation of the CE exceeding 25% in the resonant
double-Λ FWM system. According to the theoretical predictions, this backward FWM scheme can achieve near 100% CE using a medium with a large optical optical depth
of around 500. Such an efficient frequency conversion scheme may have potential applications in all-optical quantum signal processing. Moreover, we prepare populations in a single-Zeeman state with 95.8% of concentration by using optical pumping. Under
highly concentrated condition, we observe the potential difference between multi-Zeeman states and a single-Zeeman state.
論文目次 摘要i
英文延伸摘要ii
0.1 Electromagnetically induced transparency ii
0.2 Four-wave mixing iii
0.3 Phase mismatch iv
誌謝viii
目錄ix
表格xi
圖片xii
第1 章緒論 1
1.1 簡介 1
1.2 動機 2
第2 章基本理論 3
2.1 電磁波引發透明 3
2.2 四波混頻 9
2.2.1 正向四波混頻 11
2.2.2 反向四波混頻 14
2.3 相位不匹配理論 21
2.3.1 正向四波混頻的相位不匹配 21
2.3.2 反向四波混頻的相位不匹配 23
第3 章實驗系統與架設 26
3.1 冷原子系統 26
3.1.1 銣原子 26
3.1.2 磁光陷阱系統 27
3.2 電磁波引發透明系統 30
3.3 光學幫浦準備單一賽曼態系統 31
3.3.1 二能階吸收 32
3.3.2 地磁補償 33
3.4 反向四波混頻系統 34
第4 章實驗結果與討論 36
4.1 電磁波引發透明慢光實驗 36
4.2 光學幫浦準備單一賽曼態實驗 38
4.3 反向共振四波混頻實驗 50
4.4 單一賽曼態的反向共振四波混頻實驗 58
第 5 章 結論與展望 66
參考文獻68
附錄A 實驗光路架設與信號光校正70
附錄B 二能階吸收譜線的居量量測方法74
附錄C 賽曼效應與地磁補償78
附錄D 拉比頻率的校正與換算81
附錄E 反向四波混頻實驗的精度與驅動光推算83
參考文獻 [1] H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum
interference,” Phys. Rev. A, vol. 81, p. 053829, May 2010.
[2] S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic twoqubit
states,” Phys. Rev. Lett., vol. 90, p. 047905, Jan 2003.
[3] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev.
A, vol. 57, pp. 120–126, Jan 1998.
[4] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration
of a fundamental quantum logic gate,” Phys. Rev. Lett., vol. 75, pp. 4714–4717,
Dec 1995.
[5] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,”
Rev. Mod. Phys., vol. 81, pp. 865–942, Jun 2009.
[6] S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett.,
vol. 82, pp. 4611–4614, Jun 1999.
[7] L. Deng and M. G. Payne, “Three-photon destructive interference in ultraslowpropagation-
enhanced four-wave mixing,” Phys. Rev. A, vol. 68, p. 051801, Nov 2003.
[8] H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Backward four-wave mixing in a
four-level medium with electromagnetically induced transparency,” J. Opt. Soc. Am.
B, vol. 23, pp. 718–722, Apr 2006.
[9] H. Kang, G. Hernandez, and Y. Zhu, “Resonant four-wave mixing with slow light,”
Phys. Rev. A, vol. 70, p. 061804, Dec 2004.
[10] C.-K. Chiu, Y.-H. Chen, Y.-C. Chen, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, “Low-lightlevel
four-wave mixing by quantum interference,” Phys. Rev. A, vol. 89, p. 023839, Feb
2014.
[11] S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically
induced transparency,” Phys. Rev. Lett., vol. 64, pp. 1107–1110, Mar
1990.
[12] B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: Quantum
switching,” Phys. Rev. Lett., vol. 84, pp. 4080–4083, May 2000.
[13] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced
transparency: Optics in coherent media,” Rev. Mod. Phys., vol. 77, pp. 633–673, Jul
2005.
[14] S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation
based on a double electromagnetically induced transparency in a four-level tripod
atomic system,” Phys. Rev. Lett., vol. 101, p. 073602, Aug 2008.
[15] Z.-Y. Liu, Y.-H. Chen, Y.-C. Chen, H.-Y. Lo, P.-J. Tsai, I. A. Yu, Y.-C. Chen, and Y.-
F. Chen, “Large cross-phase modulations at the few-photon level,” Phys. Rev. Lett.,
vol. 117, p. 203601, Nov 2016.
[16] C.-K. Chiu, Studies on EIT-based four-wave mixing at Low light Levels. Mater’s thesis,
National Cheng Kung University, 2013.
[17] M.-J. Lee, Y.-H. Chen, I.-C. Wang, and I. A. Yu, “Eit-based all-optical switching
and cross-phase modulation under the influence of four-wave mixing,” Opt. Express,
vol. 20, pp. 11057–11063, May 2012.
[18] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional
viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev.
Lett., vol. 55, pp. 48–51, Jul 1985.
[19] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T. Esslinger, “Observation of
quantized conductance in neutral matter,” Nature, vol. 517, no. 7532, pp. 64–67, 2015.
[20] N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, “Precision
measurement of gravity with cold atoms in an optical lattice and comparison with a
classical gravimeter,” Physical Review Letters, vol. 106, no. 3, p. 038501, 2011. PRL.
[21] U. Schneider, L. Hackermuller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch,
E. Demler, S. Mandt, D. Rasch, and A. Rosch, “Fermionic transport and out-ofequilibrium
dynamics in a homogeneous hubbard model with ultracold atoms,” Nat
Phys, vol. 8, no. 3, pp. 213–218, 2012. 10.1038/nphys2205.
[22] D. Stadler, S. Krinner, J. Meineke, J.-P. Brantut, and T. Esslinger, “Observing the drop
of resistance in the flow of a superfluid fermi gas,” Nature, vol. 491, no. 7426, pp. 736–
739, 2012. 10.1038/nature11613.
[23] C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, and M. Mazzoni, “Cold rubidium
molecules formed in a magneto-optical trap,” Phys. Rev. Lett., vol. 84, pp. 2814–2817,
Mar 2000.
[24] W. HAPPER, “Optical pumping,” Rev. Mod. Phys., vol. 44, pp. 169–249, Apr 1972.
[25] W. Jiang, Q.-f. Chen, Y.-s. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically
induced transparency,” Phys. Rev. A, vol. 73, p. 053804, May 2006.
[26] J.-X. Chen, Generation of polarization-entangled photons using four-wave mixing in
cold atoms. Mater’s thesis, National Cheng Kung University, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw