進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201513582100
論文名稱(中文) 探討蒙地卡羅法模擬背向式與穿透式背向散射電子繞射顯微鏡的空間解析度
論文名稱(英文) On the Spatial Resolution of Standard - and Transmission –EBSD Using Monte Carlo Simulation
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 李彥慧
研究生(英文) Yen-Hui Li
學號 N56024185
學位類別 碩士
語文別 中文
論文頁數 212頁
口試委員 口試委員-李旺龍
口試委員-張六文
口試委員-孫佩鈴
口試委員-許文東
指導教授-郭瑞昭
中文關鍵字 穿透  背向式散射電子繞射  空間解析度  蒙地卡羅模擬 
英文關鍵字 transmission EBSD  EBSD  spatial resolution  Monte Carlo 
學科別分類
中文摘要 鑒於奈米尺度的材料觀測以及織構研究需求,2012年Keller以薄膜試片搭配上傳統EBSD設備,得到穿透式背向散射電子繞射圖譜,2013年Suzuki使用鋁及鉻薄膜試片,提出試片傾斜角度、加速電壓及試片厚度對空間解析度關係的研究。然而,對於不同的材料,最適當的試片厚度及SEM的分析條件,則沒有具體的說法。
本論文利用蒙地卡羅模擬法,來比較傳統EBSD與穿透式EBSD的空間解析度差異,藉由模擬穿透式EBSD空間解析度的影響因子,如材料原子量、試片厚度、加速電壓、試片傾斜角度等參數,探討對穿透式EBSD空間解析度的影響。論文主要分為兩個部分,第一部分為模擬傳統EBSD的空間解析度,以作為參考;第二部分為穿透式EBSD的空間解析度模擬,依次探討不同參數;原子量差異,選用銅、銀及金三種不同原子量的材料;試片厚度選擇100 nm、200 nm及300 nm;試片傾斜角度為20度及30度;加速電壓選用15kV、25kV及30kV。
最後,本論文得出穿透式EBSD在試片厚度100 nm,可得到最好的解析度;其中,銅在加速電壓25kV時,縱向解析度為25 nm,橫向解析度為15 nm,為所有參數中最佳的空間解析度。另外,隨著材料原子量的改變,加速電壓需要做些微調整。原子量越大,加速電壓要略微加大,反之;試片傾斜角度,也必須要隨著加速電壓增加,傾斜角度略為增加。
英文摘要 Due to the recent and rapid development in the field of nano-technology, the analysis techniques are needed at the nano scale. In 2012 Keller firstly demonstrated that EBSD patterns could be acquired from a thin specimen together with EBSD setup in SEM. Suzuki in 2013 also reported that the spatial resolution of aluminum and chromium carbide thin films was influenced by sample tilting angle and accelerating voltage. However, the parameters of the new developed transmission EBSD are still not to be optimized.
Therefore, in this study, we investigated the effects of these parameters in transmission-EBSD and standard-EBSD on the spatial resolution using a simulation method. There are two parts in this study: the first part is the spatial resolution simulation of standard-EBSD to compare. The other part is the spatial resolution simulation of transmission-EBSD. Simulation parameters were atomic weight, sample thickness, accelerating voltage and sample tilting angle, in order to understand the optimized spatial resolution in transmission-EBSD system. We used copper, silver and gold as materials for simulation and chose 100, 200 and 300 nm for sample thickness. We selected 15, 25 and 30 kV as accelerating voltage and the sample tilting angles were 20 and 30o.
By comparing all the parameters of transmission-EBSD, the best spatial resolution is obtained for copper with the sample thickness 100 nm at 25 kV under the tilting angle 20o. The best spatial resolution of copper is 25 nm longitudinal resolution and 15 nm lateral resolution.
論文目次 總目錄
中文摘要 I
Extended Abstract III
誌謝 X
總目錄 XII
圖目錄 XIV
表目錄 XXVII
第一章 前言 1
第二章 文獻回顧 4
2-1 背向式散射電子繞射顯微鏡 4
2-1-1簡介 4
2-1-2 空間解析度 10
2-2 穿透式背向散射電子繞射顯微鏡 24
2-2-1簡介 24
2-2-2空間解析度 26
2-3 蒙地卡羅模擬法 30
第三章 蒙地卡羅電子繞射模擬 34
3-1 背向式散射電子繞射之蒙地卡羅模擬 35
3-2 穿透式背向散射電子繞射之蒙地卡羅模擬 38
第四章 模擬結果 44
4-1 背向式散射電子繞射分析 44
4-1-1銅材料 44
4-1-2銀材料 55
4-1-3金材料 66
4-1-4模擬值與實驗值的誤差比較 75
4-2 穿透式背向散射電子繞射分析 77
4-2-1銅材料 77
4-2-2銀材料 114
4-2-3金材料 151
第五章 討論 185
5-1背向式散射電子繞射 185
5-1-1原子量對空間解析度的影響 185
5-1-2加速電壓對空間解析度的影響 189
5-2穿透式背向散射電子繞射 190
5-2-1試片厚度對空間解析度的影響 190
5-2-2原子量對空間解析度的影響 194
5-2-3加速電壓對空間解析度的影響 198
5-2-4試片傾斜角度對空間解析度的影響 200
5-3 背向式與穿透式背向散射電子繞射的空間解析度的比較 203
第六章 結論 207
參考文獻 208
參考文獻 參考文獻
[1] D. R. Steinmetz and S. Zaefferer, “Towards Ultrahigh Resolution EBSD by Low Accelerating Voltage”, Materials Science and Technology, Vol. 26, pp. 640-645, 2010.
[2] D. P. Field, “Improving the Spatial Resolution of EBSD”, Microscopy and Microanalysis, Vol. 11, pp. 52-53, 2005.
[3] A. Deal, T. Hooghan and A. Eades, “Energy-Filtered Electron Backscatter Diffraction”, Ultramicroscopy, Vol. 108, pp. 116-125, 2008.
[4] R. R. Keller and R. H. Geiss, “Transmission EBSD from 10 Nm Domains in a Scanning Electron Microscope”, Journal of Microscopy, Vol. 245, pp. 245-251, 2012.
[5] S. Suzuki, “Features of Transmission EBSD and Its Application', Jom, Vol. 65, pp. 1254-1263, 2013.
[6] S. X. Ren, E. A. Kenik, K. B. Alexander and A. Goyal, “Exploring Spatial Resolution in Electron Back-Scattered Diffraction Experiments Via Monte Carlo Simulation”, Microscopy and Microanalysis, Vol. 4, pp. 15-22, 1998.
[7] F.J Humphreys, I. Brough, “High Resolution Electron Backscatter Diffraction with a Field Emission Gun Scanning Electron Microscope” , J Microsc-Oxford, Vol. 195 (1999) 6-9.
[8] J. Hjelen, E. Nes, “Spatial Resolution Measurements of Electron Backscatter Diffraction Patterns (EBSPs) in the Scanning Electron Microscope” , in : L. D. Peachey, D. B. William (Eds.) XIIth International Congress for Electron Microscopy, San Francisco, U. S. , 1990.
[9] S. Zaefferer, “On the Formation Mechanisms, Spatial Resolution and Intensity of Backscatter Kikuchi Patterns” , Ultramicroscopy, Vol. 107, pp. 254-266, 2007.
[10] D. Dingley, “Progressive Steps in the Development of Electron Backscatter Diffraction and Orientation Imaging Microscopy” , J Microsc-Oxford, Vol. 213, pp. 214-224, 2004.
[11] M. N. Alam, M. Blackman and D. W. Pashley, “High-Angle Kikuchi Patterns”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 221, pp. 224-242, 1954.
[12] A. Bhattacharyya and J. A. Eades, “Use of an Energy Filter to Improve the Spatial Resolution of Electron Backscatter Diffraction”, Scanning, Vol. 31, pp. 114-121, 2009.
[13] S. M. Habesch, “Electron Backscattered Diffraction Analyses Combined with Environmental Scanning Electron Microscopy: Potential Applications for Non-Conducting, Uncoated Mineralogical Samples”, Materials science and technology, Vol. 16, pp. 1393-1398, 2000.
[14] 陳志慶,「背向散射電子繞射技術的空間及角度解析度之探討」,國立成功大學材料科學及工程學系博士論文, 2012。
[15] A. J. Wilkinson and P. B. Hirsch, “Electron Diffraction Based Techniques in Scanning Electron Microscopy of Bulk Materials”, Micron, Vol. 28, pp. 279-308, 1997.
[16] F. J. Humphreys, “Review Grain and Subgrain Characterisation by Electron Backscatter Diffraction”, Journal of materials science, Vol. 36, pp. 3833-3854, 2001.
[17] J. A. Venables and C.J. Harland, “Electron Back-Scattering Patterns—a New Technique for Obtaining Crystallographic Information in the Scanning Electron Microscope”, Philosophical Magazine, Vol. 27, pp. 1193-1200, 1973.
[18] P. G. T. Howell, K. M. W. Davy and A. Boyde, “Mean Atomic Number and Backscattered Electron Coefficient Calculations for Some Materials with Low Mean Atomic Number”, Scanning, Vol. 20, pp. 35-40, 1998.
[19] F. J. Humphreys, Y. Huang, I. Brough and C. Harris, “Electron Backscatter Diffraction of Grain and Subgrain Structures—Resolution Considerations”, Journal of Microscopy, Vol. 195, pp. 212-216, 1999.
[20] O. Engler and V. Randle, “Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping “, CRC press, 2009.
[21] Y. A. Novikov, A.V. Rakov and M.N. Filippov, “Beam Current Dependence of SEM Electron Probe Diameter”, Measurement Techniques, Vol. 47, pp. 438-442, 2004.
[22] G. Joseph, D. E. Newbury, C. J. David, E. L. Charles, E. Patrick, L. Eric, S. Linda and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. Kluwer Academic/Plenum Publishers, New York, 2003.
[23] K. Kunze, J. Löffler and J-P Burg, “Benefits of Low Vacuum SEM for EBSD Applications”, in EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany, Springer, pp. 575-576.
[24] A. Pérez-Huerta and Maggie Cusack, “Optimizing Electron Backscatter Diffraction of Carbonate Bio-minerals—Resin Type and Carbon Coating”, Microscopy and Microanalysis, Vol. 15, pp. 197-203, 2009.
[25] L. Reimer, “Scanning Electron Microscopy: Physics of Image Formation and Microanalysis”, 2rd , New York, Springer, 1998.
[26] P. W. Trimby, “Orientation Mapping of Nanostructured Materials Using Transmission Kikuchi Diffraction in the Scanning Electron Microscope”, Ultramicroscopy, Vol. 120, pp. 16-24, 2012.
[27] S. Kikuchi, “Diffraction of Cathode Rays by Mica”, Proceedings of the Imperial Academy”, Vol. 4, pp. 271-274, 1928.
[28] N. F. Mott and H. S. W. Massey, “The Theory of Atomic Collisions”, Clarendon Press, Oxford, 1949.
[29] D. Drouin, P. Hovington and R. Gauvin, “Casino: A New Monte Carlo Code in C Language for Electron Beam Interactions—Part II: Tabulated Values of the Mott Cross Section”, Scanning, Vol. 19, pp. 20-28, 1997.
[30] D. C. Joy and S. Luo, “An Empirical Stopping Power Relationship for Low‐Energy Electrons”, Scanning, Vol. 11, pp. 176-180, 1989.
[31] R. Gauvin and G. L'Espérance, “A Monte Carlo Code to Simulate the Effect of Fast Secondary Electrons on Κab Factors and Spatial Resolution in the Tem”, Journal of Microscopy, Vol. 168, 153-167, 1992.
[32] P. Hovington, D. Drouin and R. Gauvin, “Casino: A New Monte Carlo Code in C Language for Electron Beam Interaction—Part I: Description of the Program”, Scanning, Vol. 19 , pp. 1-14, 1997.
[33] D. Drouin, A. Réal Couture, D. Joly, X. Tastet, V. Aimez and R. Gauvin, “Casino V2. 42—A Fast and Easy‐to‐Use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users”, Scanning, Vol. 29, pp. 92-101, 2007.
[34] N. Brodusch, H. Demers, M. Trudeau and R. Gauvin, “Acquisition Parameters Optimization of a Transmission Electron Forward Scatter Diffraction System in a Cold-Field Emission Scanning Electron Microscope for Nano-materials Characterization”, Scanning, 35, pp. 375-386, 2013.
[35] 黃俊銘,「探討鍍膜厚度及原子序與金屬及陶瓷基板對背向散射電子訊號的影響」, 國立成功大學材料科學及工程學系碩士論文,2013。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw