進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201409532900
論文名稱(中文) 建構一套啾聲編碼激發超音波系統搭配對比劑於小動物影像
論文名稱(英文) Development of a Chirp Coded Excitation Ultrasound System with Contrast Agents for Small Animal Imaging
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 林冠宏
研究生(英文) Kuan-Hung LIN
學號 P86014080
學位類別 碩士
語文別 英文
論文頁數 62頁
口試委員 指導教授-陳天送
口試委員-陳培展
口試委員-林家宏
口試委員-陳世中
口試委員-杜翌群
中文關鍵字 啾聲編碼激發  高頻超音波系統  微氣泡  斑馬魚影像 
英文關鍵字 chirp coded excitation  high frequency ultrasound system  microbubble  zebrafish image 
學科別分類
中文摘要 近年來,高頻超音波被廣泛的研究,因為高頻超音波影像系統具有較高的解析度,能夠觀察表淺細微的組織,例如:血管、眼球、皮膚及小動物組織等。通常高頻超音波常用的激發訊號為短脈衝訊號,雖然解析度良好,但是人體組織衰減效應會使得超音波信號能量大幅衰減,導致穿透深度及訊雜比不佳。因此,本研究建構一套啾聲編碼激發超音波系統,使用高斯啾聲編碼訊號作為激發訊號使其提升平均功率來提昇系統的訊雜比及穿透深度,並且搭配脈衝壓縮濾波器以增加系統的訊雜比及軸向解析度。從實驗結果證明,本論文中啾聲編碼激發超音波系統透過編碼波形及脈衝壓縮,並且透過選擇合適的接收器及有助於降低雜訊的二極體對(expander),回波訊號訊雜比可以改善約15dB,並且深度可以擴展約至1-2mm。根據微氣泡影像及擊破的實驗,找出不同種類適合的微氣泡濃度及擊破訊號的參數達到所需要的微氣泡粒徑分布,使微氣泡的共振頻率更接近訊號頻率助於提昇微氣泡散射面積。
目前斑馬魚在再生醫學中扮演一個重要的角色,斑馬魚的器官擁有自我修復的功能,而其中心臟受損之後也可以重新復原。因此,將微氣泡注入斑馬魚,透過微氣泡增加影像對比度,可以清楚的觀察到斑馬魚心臟的心房及心室,並可以得到更多的資訊。透過超音波影像系統的訊雜比及穿透深度的提升,能夠在生物研究及醫學研究上提供更多的資訊。
英文摘要 In recent years, high frequency ultrasound is widely researched because the high-frequency ultrasound imaging system has higher resolution, which observes the superficial tissue such as blood vascular, eyes, skin, tissue of small animals, etc. The high-frequency ultrasound system usually uses short pulse as trigger signal, it has better resolution but the attenuation effect of tissue in the human attenuates the ultrasound energy, limiting the signal-to-noise ratio (SNR) and the penetration depth. Therefore, this thesis develops a chirp coded excitation ultrasound system. The Gaussian chirp coded excitation is used as a trigger signal for raising average power to achieve better SNR and penetration depth. After that, pulse compression filter is applied to the echo signal for enhancing SNR and axial resolution. According to experiment results, there are a 15dB SNR improvement and a 1-2mm penetration depth improvement by chirp-coded excitation, pulse compression and the handmade expander for noise reduction. In the experiment of microbubble (MB) imaging & destruction, finding the appropriate concentration and the parameters of destruction signal achieves desired MBs size distribution for different types of MBs. The resonant frequency of microbubbles is much closer the signal frequency to increase the scattering area of microbubbles.
The zebrafish plays an important role in regenerative medical. The organs of the zebrafish have self-healing ability and the heart of the zebrafish recovers after damage. Hence, the MBs are injected in the zebrafish to enhance image contrast to clearly observe the ventricle and the atrium of the heart of the zebrafish and get more information. According to the enhancement of SNR and penetration depth in high-frequency ultrasound system, more useful information is provided for the biological research and medical diagnosis.
論文目次 摘要 I
Abstract II
致謝 IV
Contents V
Tables VIII
Figures IX
Chapter 1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Literature Reviews 3
1.2.1 Chirp 4
1.2.2 Golay Codes 5
1.2.3 Barker Codes 7
1.2.4 Ultrasound Contrast Imaging 9
1.3 Thesis Organization 12
Chapter 2 Theoretical Basis 13
2.1 Coded Excitation Signal 13
2.2 Pulse Compression 16
2.2.1 Matched Filter 17
2.2.2 Optimal Filter 17
2.2.3 Inverse Filter 18
2.3 Ultrasound Contrast Agent 19
2.3.1 Brief Introduction of Ultrasound Contrast Agents 19
2.3.2 Microbubbles Physical Properties 20
Chapter 3 Material and Methods 24
3.1 Experimental Setup 24
3.1.1 System Descriptions 25
3.1.2 Signal Processing 27
3.2 System Noise Reduction 27
3.2.1 The Noise of Power Amplifier 28
3.2.2 Receiver 32
3.3 Image Phantom Manufacture 33
3.3.1 Wire Phantom 33
3.2.2 Tissue-mimicking Phantom 34
3.3.3 In-vitro Zebrafish Phantom 35
3.4 Microbubble Imaging & Destruction Preparation 37
3.4.1 Microbubble Imaging 37
3.4.2 Microbubble Destruction 38
Chapter 4 Results and Discussion 40
4.1 System Test 40
4.2 Phantom Images 43
4.2.1 Wire Phantom 43
4.2.2 Tissue-mimicking Phantom 45
4.3 Microbubble 49
4.3.1 Microbubble Imaging 49
4.3.2 Microbubble Destruction 51
4.4 In-vitro Zebrafish Images 55
Chapter 5 Conclusion 58
References 60
參考文獻 [1] R. Y. Chiao and X. Hao, "Coded excitation for diagnostic ultrasound: a system developer's perspective," IEEE Symposium on Ultrasonics vol. 1, pp. 437-448, 2003.
[2] M. O'Donnell, "Coded excitation system for improving the penetration of real-time phased-array imaging systems," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 39, pp. 341-351, 1992.
[3] J. Park, C. Hu, X. Li, Q. Zhou, and K. Shung, "Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 59, pp. 825-832, 2012.
[4] J. Park, C. Hu, and K. Shung, "Stand-alone front-end system for high-frequency, high-frame-rate coded excitation ultrasonic imaging," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 58, pp. 2620-2630, 2011.
[5] W. Qiu, Y. Yu, F. K. Tsang, H. Zheng, and L. Sun, "A Novel Modulated Excitation Imaging System for Micro-Ultrasound," IEEE Transactions on Biomedical Engineering, vol. 60, pp. 1184-1890, 2013.
[6] 邱奕元, "使用啾聲信號之三倍頻發射相位法於諧波影像偵測," 國立臺灣科技大學電機工程系碩士學位論文, 2009.
[7] 徐泰裕, "使用格雷編碼波形之三倍頻發射相位法於顯影劑諧波影像," 國立臺灣科技大學電機工程系碩士論文, 2010.
[8] H. Zhao, L. Y. L. Mo, and S. Gao, "Barker-coded ultrasound color flow imaging: theoretical and practical design considerations," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, pp. 319-331, 2007.
[9] 林士赫, "頻擾雷達訊號與巴可碼雷達訊號的辨識效能評估," 國立中央大學電機工程研究所碩士論文, 2000.
[10] C.-H. Hu, R. Liu, Q. Zhou, J. Yen, and K. Kirk Shung, "Coded excitation using biphase-coded pulse with mismatched filters for high-frequency ultrasound imaging," Ultrasonics, vol. 44, pp. 330-336, 2006.
[11] 李承翰, "高頻超音波血流成像," 國立台灣大學電機工程學研究所碩士論文, 2005.
[12] J. M. G. Borsboom, C. T. Chin, A. Bouakaz, M. Versluis, and N. de Jong, "Harmonic chirp imaging method for ultrasound contrast agent," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 52, pp. 241-249, 2005.
[13] C. Yeh, S. Su, and W. Chen, "Destruction threshold parameters estimation for ultrasonic contrast agents," Journal of Medical and Biological Engineering, vol. 25, p. 159, 2005.
[14] Y. Sun, D. E. Kruse, and K. W. Ferrara, "Contrast imaging with chirped excitation," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, pp. 520-529, 2007.
[15] 何祚明, "高頻超音波影像系統," 國立台灣大學電機工程學研究所碩士論文, 2001.
[16] J.-H. Liu, G.-S. Jeng, T.-K. Wu, and P.-C. Li, "ECG triggering and gating for ultrasonic small animal imaging," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, pp. 1590-1596, 2006.
[17] 鄭雲謙, "編碼波形於脈衝反相基頻影像之應用," 臺灣大學電機工程學研究所學位論文, pp. 1-76, 2006.
[18] J. C. Bancroft, "Introduction to matched filters," CREWES Research, 2002.
[19] P.-C. Li, "Pulse compression for finite amplitude distortion based harmonic imaging using coded waveforms," Ultrasonic imaging, vol. 21, pp. 1-16, 1999.
[20] 郭育辰, "振幅調變啾聲影像於超音波對比劑偵測," 清華大學生醫工程與環境科學系學位論文, pp. 1-96, 2010.
[21] 黃亭諭, "雙頻激發訊號於超音波分子生物影像," 國立清華大學碩士論文, 2011.
[22] N. De Jong, F. J. Ten Cate, C. T. Lancee, J. Roelandt, and N. Bom, "Principles and recent developments in ultrasound contrast agents," Ultrasonics, vol. 29, pp. 324-330, 1991.
[23] J. Ophir and K. J. Parker, "Contrast agents in diagnostic ultrasound," Ultrasound in medicine & biology, vol. 15, pp. 319-333, 1989.
[24] C.-Y. Ting, C.-H. Fan, H.-L. Liu, C.-Y. Huang, H.-Y. Hsieh, T.-C. Yen, K.-C. Wei, and C.-K. Yeh, "Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment," Biomaterials, vol. 33, pp. 704-712, 2012.
[25] J. R. Lindner, "Microbubbles in medical imaging: current applications and future directions," Nature Reviews Drug Discovery, vol. 3, pp. 527-533, 2004.
[26] P. J. A. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. De Jong, "Ultrasound contrast imaging: current and new potential methods," Ultrasound in medicine & biology, vol. 26, pp. 965-975, 2000.
[27] 丁倩妤, "以聚焦式超音波驅動包覆化療藥物微氣泡之藥物遞送以及血腦屏障之開啟於大鼠腦瘤模型上研究與治療," 國立清華大學碩士論文, 2011.
[28] N. de Jong, "Improvements in ultrasound contrast agents," Engineering in Medicine and Biology Magazine, IEEE, vol. 15, pp. 72-82, 1996.
[29] 莊克士, 醫學影像物理學. 台北: 合記圖書出版社, 2006.
[30] "SEUT-306-4 transducer Datasheet," Acoustic Sensor Co.,Ltd, 2012.
[31] "AFG3252 Arbitrary Waveform Generator Datasheet," Tektronix Inc.
[32] "325LA Broadband Power Ampilfier Datasheet," Electronics & Innovation Ltd., 2008.
[33] "PULSER 5073PR Datasheet," R/D Tech Instruments Inc.
[34] 鍾招宏, "高頻超音波影像系統建立," 國立清華大學碩論文, 2010.
[35] "PULSER 5900PR Datasheet," OLYMPUS Co.
[36] L. Sun, W. D. Richard, J. M. Cannata, C. C. Feng, J. A. Johnson, J. T. Yen, and K. K. Shung, "A high-frame rate high-frequency ultrasonic system for cardiac imaging in mice," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, pp. 1648-1655, 2007.
[37] 潘世鋒, "利用Annexin V標記凋亡細胞建立斑馬魚壓力反應偵測系統," 國立台灣海洋大學生物科技研究所碩士學位論文, 2013.
[38] J. E. Chomas, P. Dayton, D. May, and K. Ferrara, "Threshold of fragmentation for ultrasonic contrast agents," Journal of Biomedical Optics, vol. 6, pp. 141-150, 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw