進階搜尋


下載電子全文  
系統識別號 U0026-1408201315203400
論文名稱(中文) 利用超音波技術評估軟組織的生物力學特性
論文名稱(英文) Assessment of the Biomechanical Properties of Soft Tissues by Ultrasound Techniques
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 張宇嵐
研究生(英文) Yu-Lan Chang
學號 P86004108
學位類別 碩士
語文別 英文
論文頁數 47頁
口試委員 指導教授-陳天送
口試委員-陳培展
口試委員-陳永福
口試委員-林家宏
中文關鍵字 彈性  應變圖  超音波彈性成像  交互相關 
英文關鍵字 Elasticity  Strain image  Elastography  Cross-Correlation 
學科別分類
中文摘要 軟組織的生物結構與特性會隨著年齡與病理上的狀況而有所不同,由過去的研究得知組織變異常伴隨著組織的結構與硬度變化。由於體內組織狀況無法輕易由肉眼辨別,在傳統臨床上,多以徒手觸診作為一種廣泛的診斷方式,但此種方式不僅精確度低,也沒有一個標準的參考指標,所以醫護人員本身的臨床經驗與主觀意識將導致診斷成敗的關鍵因素,因此如何提出一個更準確且有效的檢測方法一直是相關學者與醫師面臨的重要議題。
目前臨床上已發展出許多可以代替傳統觸診的方法,利用超音波的物理特性與應力值作為判斷的依據,進一步把軟組織的彈性進行量化,但目前相關演算法皆以傳統的交互相關技術(cross-correlation)或是半自動的量測方法(quasi-automatic measurement)估計超音波訊號的位移情形,但這些方法不僅在位移估計上不準確又含有個人的主觀意識等缺點。因此本研究提出究一套可攜式的即時量測系統,除擷取超音波訊號外並同步紀錄施加在探頭上的力量值,再利用多步的交互相關技術(coarse-to-fine algorithm)來追蹤超音波訊號在壓縮前後的位移,並計算出物體內部的彈性與應力分布狀況,可以更有效評估軟組織生物特性與結構。本系統以5 MHz的超音波探頭作為基準,利用回波訊號來估計軟組織的厚度與形變量;以量測範圍為0到222牛頓的荷重傳感器記錄施加在探測器上的力量值。最後,將這兩筆訊號透過LabVIEW軟體來進行即時分析並將結果顯示為應變圖與超音波彈性成像。
由實驗結果顯示本系統在模擬人體組織的情況下,即使在硬物的絕對位置不明的情況下,仍可有效得知硬物在假體內的相對位置。透過豬肉組織進一步驗證時,本系統可從彈性成像上的相對硬度差來辨別出豬肉組織內部的分層狀況。
英文摘要 Biomechanical properties of soft tissues are changing with pathological conditions. However, the manual palpation relying on the judgment of the operator was widely used for estimating tissue elasticity. The way is inherent subjectivity and low sensitivity. Hence, in our study, a portable ultrasound indentation system for assessing the biomechanical properties of soft tissues was developed. The system is able to measure the tissue displacement and force signals simultaneously. The 5 MHz transducer was used in this study. The thickness and deformation of the soft tissue were decided from the ultrasound echo signal. A load cell, with a measurement range of 222N, was used to record the force applied on the probe. Moreover, the signals can be processed by the software (LabVIEW 2010) and real-time displayed the strain images and the elastograms.
The similar ultrasound indentation systems have been developed for many years. However, these studies estimated the displacement of ultrasound echo signal by using traditional cross-correlation method or the quasi-automatic measurement method containing a number of drawbacks. Hence, our study utilized coarse-to-fine algorithm, improving the displacement and strain estimates, to track the ultrasound echo signal to obtain tissue deformation.
A validation experiment was performed on tissue-mimicking phantoms and pork tissues. From the result of phantoms including hard substance, we could know the real position within phantom of the hard substance. From the experimental results of pork tissues, the elastography of pork tissue showed the relative hardness between different layers.
論文目次 中文摘要 I
Abstract II
誌謝 III
Contents IV
List of Figures V
List of Tables VII
Chapter 1. Introduction 1
1.1 Ultrasound Elastography 1
1.2 The Elasticity Estimation Methods 2
1.3 Literature Review 3
1.4 Motivation and the Aim of this Study 11
Chapter 2. Materials and Methods 13
2.1 System Architecture 13
2.1.1 Load Cell 14
2.1.2 Data Acquisition (DAQ) 18
2.1.3 Ultrasound Processing Card 18
2.2 The Elasticity Measurement 19
2.3 Phantoms Preparation 23
2.4 Experiment Procedures 24
2.4.1 Measurement Methods 26
2.4.2 Signal Processing 27
Chapter 3. Results and Discussion 30
3.1 Strain-Stress Curve 30
3.2 Elastography 32
3.2.1 Multilayer Phantom 32
3.2.2 Phantom Including Hard Substance 37
3.2.3 Pork Tissues 40
Chapter 4. Conclusion 43
References 45
參考文獻 [1] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrasonic Imaging, vol. 13, pp. 111-134, 1991.
[2] K. M. Hiltawsky, M. Kruger, C. Starke, L. Heuser, H. Ermert, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound in Medicine & Biology, vol. 27, p. 1461-1469, 2001.
[3] A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, "Breast disease: Clinical application of US elastography for diagnosis," Radiology, vol. 239, pp. 341-350, 2006.
[4] B. S. Garra, "Tissue elasticity imaging using ultrasound," Applied Radiology, vol. 40, pp. 24-30, 2011.
[5] L. D. Landau and E. M. Lifshitz, "Theory of elasticity," Pergamon Books Ltd., New York, 1986.
[6] W. A. D. Anderson, "Pathology, CV Mosby Co," St. Louis, vol. 4, p. 309, 1961.
[7] H. Chen, H. Shi, and T. Varghese, "Improvement of elastographic displacement estimation using a two-step cross-correlation method," Ultrasound in Medicine & Biology, vol. 33, p. 48, 2007.
[8] T. Varghese, M. Bilgen, and J. Ophir, "Multiresolution imaging in elastography," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, pp. 65-75, 1998.
[9] R. G. P. Lopata, M. M. Nillesen, I. H. Gerrits, J. M. Thijssen, L. Kapusta, F. N. van de Vosse, and C. L. de Korte, "In vivo 3D cardiac and skeletal muscle strain estimation," 2006 IEEE Ultrasonics Symposium, pp. 744-747.
[10] H. Shi and T. Varghese, "Two-dimensional multi-level strain estimation for discontinuous tissue," Physics in Medicine and Biology, vol. 52, p. 389, 2006.
[11] T. Varghese, J. Ophir, and I. Cespedes, "Noise reduction in elastograms using temporal stretching with multicompression averaging," Ultrasound in Medicine & Biology, vol. 22, pp. 1043-1052, 1996.
[12] R. G. P. Lopata, M. M. Nillesen, H. H. G. Hansen, I. H. Gerrits, J. M. Thijssen, and C. L. de Korte, "Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data," Ultrasound in Medicine &Biology, vol. 35, pp. 796-812, 2009.
[13] Y. P. Zheng and A. F. T. Mak, "An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo," IEEE Transactions on Biomedical Engineering, vol. 43, pp. 912-918, 1996.
[14] Y. Zheng and A. F. T. Mak, "Effective elastic properties for lower limb soft tissues from manual indentation experiment,” IEEE Transactions on Rehabilitation Engineering, vol. 7, pp. 257-267, 1999.
[15] J. Lau, C. W. P. Li-Tsang, and Y. P. Zheng, "Application of tissue ultrasound palpation system (TUPS) in objective scar evaluation," Burns, vol. 31, pp. 445-452, 2005.
[16] Y. P. Huang, Y. P. Zheng, and S. F. Leung, "Quasi-linear viscoelastic properties of fibrotic neck tissues obtained from ultrasound indentation tests in vivo," Clinical Biomechanics, vol. 20, pp. 145-154, 2005.
[17] Y. P. Zheng, Y. K. C. Choi, K. Wong, S. Chan, and A. F. T. Mak, "Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system," Ultrasound in Medicine & Biology, vol. 26, pp. 451-456, 2000.
[18] Y. P. Zheng, Z. M. Li, A. P. C. Choi, M. H. Lu, X. Chen, and Q. H. Huang, "Ultrasound palpation sensor for tissue thickness and elasticity measurement assessment of transverse carpal ligament," Ultrasonics, vol. 44, pp. e313-e317, 2006.
[19] H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrasonic Imaging, vol. 13, pp. 111-134, 1991.
[20] T. Varghese, "Quasi-static ultrasound elastography," Ultrasound Clinics, vol. 4, p. 323, 2009.
[21] 王信凱, "超音波彈性影像Ultrasound Elastography," 中華民國放射線醫學會會訊, pp. 2-3, 2008.
[22] W. A. D. Anderson, "Pathology, CV Mosby Co," St. Louis, vol. 4, p. 309, 1961.
[23] L. Han, J. A. Noble, and M. Burcher, "A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue," Ultrasound in Medicine & Biology, vol. 29, pp. 813-823, 2003.
[24] J. C. Ziegert and J. L. Lewis, "In-vivo mechanical properties of soft tissue covering bony prominences," Journal of Biomechanical Engineering, vol. 100, p. 194, 1978.
[25] H. E. Lewis, J. Mayer, and A. A. Pandiscio, "Recording skinfold calipers for the determination of subcutaneous edema," J. Lab. Clin. Med, vol. 66, pp. 154-60, 1965.
[26] W. M. Vannah and D. S. Childress, "An investigation of the three dimensional mechanical response of bulk muscular tissue: experimental methods and results," Computational Methods inBioengineering, pp. 493-503, 1988.
[27] G. H. W. L. A. F. T. Mak, and S. Y. Lee, "Biomechanical assessment of below-knee stump tissue," J. Rehab. Res., Dev.., vol. 31, no.3, 1994.
[28] M. Ferguson-Pell, S. Hagisawa, and R. D. Masiello, "A skin indentation system using a pneumatic bellows," Journal of Rehabilitation Research and Development, vol. 31, pp. 15-15, 1994.
[29] M. Horikawa, S. Ebihara, F. Sakai, and M. Akiyama, "Non-invasive measurement method for hardness in muscular tissues," Medical and Biological Engineering and Computing, vol. 31, pp. 623-627, 1993.
[30] OMEGA Engineering inc., "Economical Miniature Tension or Compression Load Cells Specifications," 2013.
[31] National Instruments, "NI USB-6008/6009 User Guide and Specifications," 2012.
[32] US Ultratek inc., "PCIUT3100(T)-SDKLV User Guide and Specifications," 2007.
[33] E. Saada, "Theory and Applications, Ch. 14," Pergamon Press, NY, 1974.
[34] C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. Te Nijenhuis, "Elastic and acoustic properties of vessel mimicking material for elasticity imaging," Ultrasonic Imaging, vol. 19, pp. 112-126, 1997.
[35] Y. C. Fung, "Biomechanics: mechanical properties of living tissues," Springer-Verlag, 1993.
[36] G. N. Kawchuk, T. R. Liddle, O. Fauvel, and C. Johnston, "The accuracy of ultrasonic indentation in detecting simulated bone displacement: a comparison of three techniques," Journal of Manipulative and Physiological therApeutics, vol. 29, pp. 126-133, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw