進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201301464300
論文名稱(中文) 探討SEPT12絲胺酸198磷酸化對於septin絲狀結構之調控
論文名稱(英文) Ser-198 phosphorylation of SEPT12 regulates septin filament fomation
校院名稱 成功大學
系所名稱(中) 生物化學暨分子生物學研究所
系所名稱(英) Department of Biochemistry and Molecular Biology
學年度 101
學期 2
出版年 102
研究生(中文) 施世全
研究生(英文) Shih-Chuan Shih
學號 S16004149
學位類別 碩士
語文別 英文
論文頁數 70頁
口試委員 指導教授-郭保麟
口試委員-張文粲
口試委員-徐駿森
口試委員-陳逸然
口試委員-蔣輯武
中文關鍵字 SEPT12磷酸化  septin 複合物  spermiogenesis 
英文關鍵字 SEPT12 phosphorylation  septin complex  spermiogenesis 
學科別分類
中文摘要 Septin家族是一群具高度保留性,且有GTP水解酶活性的蛋白。在真核細胞內,SEPTINs會形成絲狀結構,參與調控細胞內的許多生理功能,例如:細胞的移動、細胞型態形成、細胞骨架重整、以及細胞質分裂...等。在結構上,SEPTINs皆具有GTP鍵結功能區以及N、C端的區域。不同的SEPTINs可藉由GTP鍵結功能區之介面(G interface)或N 端與C 端之端點界面(NC interface)彼此結合,形成寡聚體核心聚合物,進一步以尾端與尾端結合的方式形成更高級的結構,例如:絲狀或是環狀結構。Septin聚合物的組合與解離是受到轉譯後修飾進行調控,許多研究指出在酵母菌的細胞周期過程中,septin聚合物的動態變化受到septin磷酸化的調控。然而在哺乳類中,很少有研究指出septin磷酸化是如何對septin的組合及解離進行調控。
SEPT12為睪丸特異性蛋白,在晚期分化的男性生殖細胞中,會形成絲狀或是環狀的結構參與精子型態的分化。在先前研究我們發現SEPT12參與SEPT2-SEPT6-SEPT7-SEPT12-SEPT12-SEPT7-SEPT6-SEPT2(SETP2-6-7-12-12-7-6-2) 寡具體複合物的組合。在臨床上,我們也發現SEPT12的點突變(D197N及T89M)會導致SEPT12無法形成絲狀結構,促使精子的環體缺陷,進而導致男性不孕症。在本研究中,我們藉由質譜儀鑑定SEPT12磷酸化位點,發現只有絲胺酸198(Ser198)受到磷酸化調控。因此我們想要觀察絲胺酸198磷酸化如何調控SEPT12形成絲狀結構。首先,我們將絲胺酸198個別突變成丙胺酸(Ala) 、 天門冬胺酸(Asp)或谷胺酸(Glu)去模擬去磷酸化(S198A)及磷酸化(S198D和S198E)。我們觀察到絲胺酸198在模擬磷酸化的情況下無法與SEPT7結合形成核心結構進而無法形成絲狀結構。藉由轉殖不同量的SEPT12WT及SEPT12S198E,我們發現磷酸化的多寡會影響到SEPT12型成絲狀結構的效率。我們接著去觀察絲狀結構被絲胺酸198磷酸化抗體染到的情形,發現只有少數的絲狀結構有磷酸化絲胺酸訊號。我們更進一步去探討絲胺酸198磷酸化在造精過程中所扮演的角色,在spermiogenesis第14到16步驟,粒線體開始在精子中段部位組裝的過程中,絲胺酸198磷酸化訊號會從頸部的部位移動到環體的部位。總結以上結果,絲胺酸198磷酸化調控對於SEPT12絲狀結構形成及動態移動扮演重要的角色。
英文摘要 Septins, highly conserved P-loop (phosphate binding loop) GTPases and filament-formation proteins in eukaryote, have diverse cellular roles such as migration, cellular morphogenesis, cytoskeletal reorganization, and cytokinesis. All septins contain a consensus GTP binding domain (G interface) and N- and C-terminal region (NC interface). Different septins interact with each other through G and NC interface to form the oligomeric core complexes that join end to end to form the higher-order structures (e.g. filaments, and rings). The assembly and disassembly of septin complexes are regulated by post-translational modifications of component septins. Many studies indicated that the septin phosphoryaltion regulated the septin dynamics during the cell cycle in yeast. However, how septin phosphorylation regulates the assembly/disassembly of septin complexes in the mammalian species is still unclear.
SEPT12 is a testis-specific protein which forms the filament or ring structure in the terminally differentiated male germ cells. In previous studies, we found SEPT12 participates in assembly of the oligomeric core complex-“SEPT2-SEPT6-SEPT7-SEPT12-SEPT12-SEPT7-SEPT6-SEPT2” (SEPT 2-6-7-12-12-7-6-2) to form the filament. Moreover, we found the SEPT12 mutations (D197N and T89M), which lose the ability to form the filament and cause male infertility with defective sperm annulus. In this study, we identified that Ser198 was the only phosphorylation site by using mass spectrometer. Therefore, we aimed to investigate the effects of Ser198 phosphorylation on SEPT12 filament assembly/disassembly. First, Ser198 to Ala or Asp/Glu mutants were generated to mimic dephosphorylation (SEPT12S198A) or phosphorylation (SEPT12S198D and SEPT12S198E), respectively. The SEPT12S198D and SEPT12S198E neither formed filament nor interacted with SEPT7. By co-transfecting different doses of wild-type SEPT12 and the SEPT12S198E plasmids into cells, we found the efficiency of filament formation was decreased with increasing doses of SEPT12S198E. We also observed that the filament was rarely stained by the specific p-Ser198 antibody. We went further to explore the p-Ser198 expression pattern in spermatogenesis. The p-Ser198 signal was localized at the middle piece during the step14-16 of spermiogenesis when mitochondria start to rearrange along middle piece. In summary, our finding suggests Ser198 phosphorylation is important for formation of SEPT12 filament and dynamic of SEPT12 complex.
論文目次 Chinese Abstract(摘 要) I
Abstract III
ACKNOWLEDGEMENT V
TABLE OF CONTECTS VII
LIST OF TABLE X
LIST OF FIGURES XI
LIST OF ABBREVIATIONS XIII
1. INTRODUTCION 1
1.1 Male infertility 1
1.2 Spermatogenesis and spermiogensis 2
1.3 The genes involve in male infertility during the spermatogenesis 4
1.4 Septin gene family 4
1.5 Setpin related diseases 6
1.6 The role of Septin phosphorylaion 7
1.7 Setpin12 9
1.8 Objectives 10
2. MATERIALS AND METHODS 11
2.1 Site- directed mutagenesis 11
2.2 Cell culture 12
2.3 Total protein extraction 13
2.4 Co-Immunoprecipitation analysis (Co-IP) 14
2.5 The analysis of phosphorylation profile by mass spectrometer 16
2.5.1 Liquid chromatography and tandem mass spectrometry (LC-MS/MS) analysis 16
2.5.2 Database search: 17
2.5.3 Phosphorylation site localization: 17
2.6 The generation of Ser198 phosphorylation antibody 17
2.7 Western blot analysis 17
2.8 Sperm preparation 19
2.9 Separation of the testicular germ cell population 19
2.10 Immunofluorescent assay, IFA 21
2.10.1 For testicular section embed in paraffin blocks 21
2.10.2 For sperm smear preparation 22
2.10.3 For cell 24
2.11 His- tagged protein purification 25
2.12 Silver staining 27
2.13 GTP binding assay 28
2.14 Phosphorylation profile prediction 29
2.15 Statistical analysis 29
3. RESULTS 30
3.1 Identification of SEPT12 phosphorylation sites by mass spectrometer 30
3.2 The constitutively phosphorylated Ser198 loses the capability to form the filament 30
3.3 The mimetic phosphorylated Ser198 interferes with interaction between SEPT12/SEPT7 and SEPT12/SEPT2 31
3.4 Ser198 phosphorylation disrupts the formation of octameric SEPT2-6-7-12-12-7-6-2 complex 32
3.5 The Ser198 phosphorylation does not affect GTP binding 33
3.6 The SEPT12 filament is hardly stained by the anti p-Ser198 antibody 33
3.7 The expression pattern of phorphorylated Ser198 in terminal post-meiotic male germ cells 34
4. DISCUSSION 35
4.1 The phosphorylation site of SEPT12 35
4.2 How Ser198 phosphorylation affects SEPT12 complex assembly 36
4.3 The potential kinase or phosphatase regulate Ser198 phosphorylation 38
4.4 The possible biological function of Ser198 phosphorylaion 39
4.5 Conclusions 40
References 41
Figures 49
Table 69
CURRICULUM VITAE 70
參考文獻 Amin, N.D., Y.L. Zheng, S. Kesavapany, J. Kanungo, T. Guszczynski, R.K. Sihag, P. Rudrabhatla, W. Albers, P. Grant, and H.C. Pant. 2008. Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J Neurosci. 28:3631-3643.
Beites, C.L., K.A. Campbell, and W.S. Trimble. 2005. The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biocheml J. 385:347-353.
Beites, C.L., X.R. Peng, and W.S. Trimble. 2001. Expression and analysis of properties of septin CDCrel-1 in exocytosis. Methods enzymol. 329:499-510.
Berkovits, B.D., and D.J. Wolgemuth. 2011. The first bromodomain of the testis-specific double bromodomain protein Brdt is required for chromocenter organization that is modulated by genetic background. Development. 360:358-368.
Caudron, F., and Y. Barral. 2009. Septins and the lateral compartmentalization of eukaryotic membranes. Dev cell. 16:493-506.
Cerveira, N., C. Correia, S. Bizarro, C. Pinto, S. Lisboa, J.M. Mariz, M. Marques, and M.R. Teixeira. 2006. SEPT2 is a new fusion partner of MLL in acute myeloid leukemia with t(2;11)(q37;q23). Oncogene. 25:6147-6152.
Cooke, H.J., and P.T. Saunders. 2002. Mouse models of male infertility. Nat Rev Genet. 3:790-801.
De Kretser, D.M., and H.W. Baker. 1999. Infertility in men: recent advances and continuing controversies. J Clin endocrinol and metab. 84:3443-3450.
deVos, T., R. Tetzner, F. Model, G. Weiss, M. Schuster, J. Distler, K.V. Steiger, R. Grutzmann, C. Pilarsky, J.K. Habermann, P.R. Fleshner, B.M. Oubre, R. Day, A.Z. Sledziewski, and C. Lofton-Day. 2009. Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer. Clin Chem. 55:1337-1346.
Ding, X., W. Yu, M. Liu, S. Shen, F. Chen, L. Cao, B. Wan, and L. Yu. 2008. GTP binding is required for SEPT12 to form filaments and to interact with SEPT11. Mol cells. 25:385-389.
Ding, X., W. Yu, M. Liu, S. Shen, F. Chen, B. Wan, and L. Yu. 2007. SEPT12 interacts with SEPT6 and this interaction alters the filament structure of SEPT6 in Hela cells. J Biochemistry Mol Biol. 40:973-978.
Dobbelaere, J., M.S. Gentry, R.L. Hallberg, and Y. Barral. 2003. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev cell. 4:345-357.
Edwards, A.S., and J.D. Scott. 2000. A-kinase anchoring proteins: protein kinase A and beyond. Curr Opin Cell Biol. 12:217-221.
Egelhofer, T.A., J. Villen, D. McCusker, S.P. Gygi, and D.R. Kellogg. 2008. The septins function in G1 pathways that influence the pattern of cell growth in budding yeast. PloS one. 3:e2022.
Escalier, D. 2006. [Animal models: Candidate genes for human male infertility]. Gynecol, Obstet Fertil. 34:827-830.
Fernandes, A.P., G. Curi, F.G. Franca, and S.N. Bao. 2001. Nuclear changes and acrosome formation during spermiogenesis in Euchistus heros (Hemiptera: Pentatomidae). Tissue Cell. 33:286-293.
Garcia, G., 3rd, A. Bertin, Z. Li, Y. Song, M.A. McMurray, J. Thorner, and E. Nogales. 2011. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J Cell Biol. 195:993-1004.
Griffin, D.K., and K.A. Finch. 2005. The genetic and cytogenetic basis of male infertility. Hum Fertil(Camb). 8:19-26.
Groban, E.S., A. Narayanan, and M.P. Jacobson. 2006. Conformational changes in protein loops and helices induced by post-translational phosphorylation. PLoS Comput Biol. 2:e32.
Guzick, D.S., J.W. Overstreet, P. Factor-Litvak, C.K. Brazil, S.T. Nakajima, C. Coutifaris, S.A. Carson, P. Cisneros, M.P. Steinkampf, J.A. Hill, D. Xu, D.L. Vogel, and N. National Cooperative Reproductive Medicine. 2001. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 345:1388-1393.
Hall, P.A., K. Jung, K.J. Hillan, and S.E. Russell. 2005. Expression profiling the human septin gene family. J Pathol. 206:269-278.
Hall, P.A., and S.E. Russell. 2012. Mammalian septins: dynamic heteromers with roles in cellular morphogenesis and compartmentalization. J Pathol. 226:287-299.
Hartwell, L.H. 1971. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res. 69:265-276.
Hernandez-Rodriguez, Y., and M. Momany. 2012. Posttranslational modifications and assembly of septin heteropolymers and higher-order structures. Curr opin Microbiol. 15:660-668.
Huleihel, M., and E. Lunenfeld. 2004. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl. 6:259-268.
Ihara, M., A. Kinoshita, S. Yamada, H. Tanaka, A. Tanigaki, A. Kitano, M. Goto, K. Okubo, H. Nishiyama, O. Ogawa, C. Takahashi, S. Itohara, Y. Nishimune, M. Noda, and M. Kinoshita. 2005. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev cell. 8:343-352.
Kato, S., T. Kobayashi, K. Kusuda, Y. Nishina, Y. Nishimune, K. Yomogida, M. Yamamoto, H. Sakagami, H. Kondo, M. Ohnishi, N. Chida, Y. Yanagawa, and S. Tamura. 1996. Differentiation-dependent enhanced expression of protein phosphatase 2Cbeta in germ cells of mouse seminiferous tubules. FEBS lett. 396:293-297.
Kim, M.S., C.D. Froese, M.P. Estey, and W.S. Trimble. 2011. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol. 195:815-826.
Kinoshita, A., M. Kinoshita, H. Akiyama, H. Tomimoto, I. Akiguchi, S. Kumar, M. Noda, and J. Kimura. 1998. Identification of Septins in Neurofibrillary Tangles in Alzheimer's Disease. Am J Pathol. 153:1551-1560.
Kissel, H., M.M. Georgescu, S. Larisch, K. Manova, G.R. Hunnicutt, and H. Steller. 2005. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev cell. 8:353-364.
Kuo, Y.C., Y.H. Lin, H.I. Chen, Y.Y. Wang, Y.W. Chiou, H.H. Lin, H.A. Pan, C.M. Wu, S.M. Su, C.C. Hsu, and P.L. Kuo. 2012. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 33:710-719.
Lhuillier, P., B. Rode, D. Escalier, P. Lores, T. Dirami, T. Bienvenu, G. Gacon, E. Dulioust, and A. Toure. 2009. Absence of annulus in human asthenozoospermia: case report. Hum Reprod. 24:1296-1303.
Lin, Y.H., C.K. Chou, Y.C. Hung, I.S. Yu, H.A. Pan, S.W. Lin, and P.L. Kuo. 2011. SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos. Fertil Steril. 95:363-365.
Lin, Y.H., Y.M. Lin, Y.N. Teng, T.Y. Hsieh, Y.S. Lin, and P.L. Kuo. 2006. Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue. Fertil Steril. 86:1650-1658.
Lin, Y.H., Y.M. Lin, Y.Y. Wang, I.S. Yu, Y.W. Lin, Y.H. Wang, C.M. Wu, H.A. Pan, S.C. Chao, P.H. Yen, S.W. Lin, and P.L. Kuo. 2009. The expression level of septin12 is critical for spermiogenesis. Am J Pathol. 174:1857-1868.
Lindsey, R., and M. Momany. 2006. Septin localization across kingdoms: three themes with variations. Curr Opin Microbiol. 9:559-565.
Lukoyanova, N., S.A. Baldwin, and J. Trinick. 2008. 3D reconstruction of mammalian septin filaments. J Mol Biol. 376:1-7.
McMurray, M.A., and J. Thorner. 2009. Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div. 4:18.
Mendoza, M., A.A. Hyman, and M. Glotzer. 2002. GTP binding induces filament assembly of a recombinant septin. Curr Biol . 12:1858-1863.
Mostowy, S., and P. Cossart. 2012. Septins: the fourth component of the cytoskeleton. Nature reviews. Mol Cell Biol. 13:183-194.
Nagata, K., T. Asano, Y. Nozawa, and M. Inagaki. 2004. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol chem. 279:55895-55904.
Nolan, M.A., D.F. Babcock, G. Wennemuth, W. Brown, K.A. Burton, and G.S. McKnight. 2004. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci U S A. 101:13483-13488.
O'Brien, E.D., D. Krapf, M.O. Cabada, P.E. Visconti, and S.E. Arranz. 2011. Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation. Dev Biol. 350:80-88.
Pallares-Ruiz, N., S. Carles, M. Des Georges, C. Guittard, F. Arnal, C. Humeau, and M. Claustres. 1999. Complete mutational screening of the cystic fibrosis transmembrane conductance regulator gene: cystic fibrosis mutations are not involved in healthy men with reduced sperm quality. Hum Reprod. 14:3035-3040.
Qi, M., W. Yu, S. Liu, H. Jia, L. Tang, M. Shen, X. Yan, H. Saiyin, Q. Lang, B. Wan, S. Zhao, and L. Yu. 2005. Septin1, a new interaction partner for human serine/threonine kinase aurora-B. Biochem Biophys Res Commun. 336:994-1000.
Rapley, E.A., G.P. Crockford, D. Teare, P. Biggs, S. Seal, R. Barfoot, S. Edwards, R. Hamoudi, K. Heimdal, S.D. Fossa, K. Tucker, J. Donald, F. Collins, M. Friedlander, D. Hogg, P. Goss, A. Heidenreich, W. Ormiston, P.A. Daly, D. Forman, T.D. Oliver, M. Leahy, R. Huddart, C.S. Cooper, J.G. Bodmer, D.F. Easton, M.R. Stratton, and D.T. Bishop. 2000. Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet. 24:197-200.
Sakai, K., M. Kurimoto, A. Tsugu, S.L. Hubbard, W.S. Trimble, and J.T. Rutka. 2002. Expression of Nedd5, a mammalian septin, in human brain tumors. J Neurooncol. 57:169-177.
Sandrock, K., I. Bartsch, S. Blaser, A. Busse, E. Busse, and B. Zieger. 2011. Characterization of human septin interactions. Biol Chem. 392:751-761.
Savitski, M.M., S. Lemeer, M. Boesche, M. Lang, T. Mathieson, M. Bantscheff, and B. Kuster. 2011. Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics. 10:M110 003830.
Saxena, D.K., T. Oh-Oka, K. Kadomatsu, T. Muramatsu, and K. Toshimori. 2002. Behaviour of a sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice. Reproduction. 123:435-444.
Schlicker, M., V. Schnulle, L. Schneppel, V.I. Vorob'ev, and W. Engel. 1994. Disturbances of nuclear condensation in human spermatozoa: search for mutations in the genes for protamine 1, protamine 2 and transition protein 1. Hum reprod. 9:2313-2317.
Shah, K., G. Sivapalan, N. Gibbons, H. Tempest, and D.K. Griffin. 2003. The genetic basis of infertility. Reproduction. 126:13-25.
Shiryaev, A., S. Kostenko, G. Dumitriu, and U. Moens. 2012. Septin 8 is an interaction partner and in vitro substrate of MK5. World J Biol Chem. 3:98-109.
Sirajuddin, M., M. Farkasovsky, F. Hauer, D. Kuhlmann, I.G. Macara, M. Weyand, H. Stark, and A. Wittinghofer. 2007. Structural insight into filament formation by mammalian septins. Nature. 449:311-315.
Sirajuddin, M., M. Farkasovsky, E. Zent, and A. Wittinghofer. 2009. GTP-induced conformational changes in septins and implications for function. Proc Natl Acad Sci U S A. 106:16592-16597.
Sitz, J.H., K. Baumgartel, B. Hammerle, C. Papadopoulos, P. Hekerman, F.J. Tejedor, W. Becker, and B. Lutz. 2008. The Down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1A phosphorylates the neurodegeneration-related septin 4. Neuroscience. 157:596-605.
Spiliotis, E.T., and W.J. Nelson. 2006. Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci. 119:4-10.
Sudo, K., H. Ito, I. Iwamoto, R. Morishita, T. Asano, and K. Nagata. 2007. SEPT9 sequence alternations causing hereditary neuralgic amyotrophy are associated with altered interactions with SEPT4/SEPT11 and resistance to Rho/Rhotekin-signaling. Hum mutat. 28:1005-1013.
Tamma, G., J.H. Robben, C. Trimpert, M. Boone, and P.M. Deen. 2011. Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am J Physiol Cell Physiol. 300:C636-646.
Tang, C.S., and S.I. Reed. 2002. Phosphorylation of the septin cdc3 in g1 by the cdc28 kinase is essential for efficient septin ring disassembly. Cell cycle. 1:42-49.
Vogt, P.H. 2004. Molecular genetics of human male infertility: from genes to new therapeutic perspectives. Curr Pharm Des. 10:471-500.
Xie, Y., J.P. Vessey, A. Konecna, R. Dahm, P. Macchi, and M.A. Kiebler. 2007. The GTP-binding protein Septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr Biol. 17:1746-1751.
Xue, J., P.J. Milburn, B.T. Hanna, M.E. Graham, J.A. Rostas, and P.J. Robinson. 2004. Phosphorylation of septin 3 on Ser-91 by cGMP-dependent protein kinase-I in nerve terminals. Biochem J. 381:753-760.
Yan, W. 2009. Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol. 306:24-32.
Yu, W., X. Ding, F. Chen, M. Liu, S. Shen, X. Gu, and L. Yu. 2009. The phosphorylation of SEPT2 on Ser218 by casein kinase 2 is important to hepatoma carcinoma cell proliferation. Mol Cell Biochem. 325:61-67.
Zhang, J., C. Kong, H. Xie, P.S. McPherson, S. Grinstein, and W.S. Trimble. 1999. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol. 9:1458-1467.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw