進階搜尋


下載電子全文  
系統識別號 U0026-1408201212391800
論文名稱(中文) 低塑性粉土液化後體積應變行為研究
論文名稱(英文) A Study on Post-Liquefaction Volumetric Strain Behavior of Low Plasticity Silty Sand
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 洪聖淵
研究生(英文) Sheng-Yuan Hong
學號 n66991334
學位類別 碩士
語文別 中文
論文頁數 175頁
口試委員 指導教授-陳景文
口試委員-倪勝火
口試委員-陳怡睿
口試委員-黃添坤
口試委員-李維峰
中文關鍵字 低塑性粉土  液化後體積應變特性  擾動效應 
英文關鍵字 Low-plasticity silt  Volumetric strain after post-liquefaction  Effects of sample disturbance 
學科別分類
中文摘要 近年來國內外重大地震除造成嚴重土壤液化等災害外,地震過後因土壤顆粒間重新排列所產生之地表沉陷現象,亦引發許多二次災害,有鑑於過去研究僅針對重模乾淨砂土之液化後體積應變量進行探討,故本研究藉由新式Gel Push取樣器取得未擾動原狀土樣,由原狀與重模土樣來探討低塑性粉土受到擾動後之動態強度變化,以及低塑性粉土液化後體積應變特性。
研究結果顯示,低塑性粉土其動態強度會因擾動而降低,且其動態強度折減之趨勢會隨著低塑性細粒料含量的增加而趨於明顯,在液化後體積應變行為方面,其液化後之體積應變量會隨著低塑性細粒料含量增加而增加,且重模土樣產生之液化後體積應變量較原狀土樣為高,重模試體達到初始液化後其最大剪應變量會趨於極限值,原狀試體在達到初始液化後其剪應變量仍有增加之趨勢,因此,若以重模試體之試驗結果作工程設計與參數選定之參考將與土樣現地性質有所差異。
英文摘要 In recent years, many severe disasters resulted from soil liquefaction during major earthquakes in the world and ground subsidence due to the rearrangement of soil grains after earthquake was also resulted in secondary damage of the structures. Previous literatures were focused on the volume change of remolded clean sand during liquefaction. However, soil liquefaction induced from earthquake was also found in strata other than clean sand, especially in many strata with low-plastic silts. In this study, the undisturbed low-plastic soil specimens are obtained by a new developed Gel Push sampler, comparison is performed on the influence of disturbance to the dynamic strength and volume change of low-plastic silt in between undisturbed and remolded conditions.

The results indicated that the dynamic strength of low-plastic silt decreases with reducing the degree of disturbance during sampling and the tendency of decrease in dynamic strength is significantly with the increase in fine contents of the low-plastic silt. On the behavior of volume change, it increases with increasing of the fines content after soil liquefied and the volume change after liquefying of a remolded sample is much noticeable than that of an undisturbed one. The shear strain of a remolded sample is approaching to a critical value; however, the shear strain of an undisturbed sample is increasing steadily. Therefore, the engineering judgment has to be made as those design factors are obtained from laboratory test with remolded samples of low-plasticity silt.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 VII
表目錄 X
圖目錄 XI
照片目錄 XIV
符號表 XV
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 1
1-3 研究目的 2
1-4 研究流程 2
第二章 文獻回顧 5
2-1 土壤液化 5
2-1-1 土壤液化機制與定義 5
2-1-2 反覆荷重下破壞準則之定義 7
2-1-3 砂土承受反覆荷重下之行為 8
2-2 土壤動態性質彙整 9
2-2-1土壤液化潛能之影響因素 9
2-2-2細粒料含量對土壤液化阻抗之影響 16
2-3細粒料含量與孔隙比區間之關係 29
2-4 砂顆粒結構假想 33
2-5 液化後體積應變行為 34
2-6 國內外災害案例探討 40
第三章 研究計畫及試驗設備 45
3-1 試驗土樣 45
3-2 Gel Push取樣方法介紹 49
3-2-1 GP取樣器介紹 49
3-2-2 GP取樣器過程 51
3-2-3 GP取樣器優點 52
3-3 試驗儀器與設備 53
3-4 試驗步驟 59
3-4-1儀器校正 59
3-4-2 土樣試體準備 59
3-4-3 試體飽和 63
3-4-4 試體壓密 63
3-4-5 動態加載試驗 64
3-4-6 液化後體積應變試驗 64
3-4-7 資料處理 64
3-5 研究內容 65
第四章 試驗結果與討論 67
4-1 試驗結果 67
4-1-1試驗土樣基本性質 67
4-1-2低塑性細粒料與孔隙比間之關係 79
4-1-3動態三軸試驗數據整理 82
4-2 試驗成果分析探討 91
4-2-1粉土動態性質探討 91
4-2-2液化後體積應變行為 95
第五章 結論與建議 111
5-1結論 111
5-2建議 113
參考文獻 115
附錄A (試驗圖表整理) 121
附錄B(剪應變量與剪力模數之變化) 167
參考文獻 1.中華人民共和國國家標準,「建築抗震設計規範」,中國建築工業出版社,北京(1989)
2.吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期 ,第39-70頁(1979)。
3.吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁(1987)。
4.吳紹華,「砂土細粒料含量對動力三軸試驗超額孔隙水壓量測之影響」,碩士論文,國立台灣大學土木工程系研究所,臺北 (2006)
5.李維峰,「土壤液化防治之研究與發展趨勢」,地工技術,第103期,第89-91頁,3月(2005)。
6.林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,碩士論文,國立成功大學土木工程系研究所,臺南(2006)。
7.林志慶,「霧峰地區土壤液化引致地表沉陷量之研究」,碩士論文,國立中興大學土木工程系研究所, 臺中(2006)
8.范恩碩,「以九二一集集地震案例探討細粒料對液化前能評估之影響」,碩士論文,國立成功大學土木工程系研究所,臺南(2004)
9.施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,碩士論文,國立成功大學土木工程系研究所,臺南(2009)。
10.孫家雯,「砂土細料界定對液化強度之影響」,碩士論文,國立台灣大學土木工程研究所,臺北(2003)。
11.高茂森,「土壤動三軸試驗條件對液化潛能分析之影響」,碩士論文,國立成功大學土木工程系研究所, 臺南(2004)
12.張浼珣,「初步液化潛能分區法之研究」,碩士論文,國立成功大學土木工程系研究所,臺南(2005)。
13.張維哲,「土壤取樣方式對低塑性粉土質砂動態性質探討」,碩士論文,國立成功大學土木工程系研究所,臺南(2009)
14.許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,碩士論文,國立成功大學土木工程系研究所,臺南(2003)。
15.陳名利,「以剪力模數評估砂土液化潛能之研究」,碩士論文,國立台灣工業技術學院工程技術研究所營建工程組,臺北(1990)。
16.陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,碩士論文,國立成功大學土木工程系研究所,臺南(1999)。
17.陳界文,「細粒料特性對土壤抗液化強度之影響」,碩士論文,國立台灣大學土木工程系研究所,臺北(2001)。
18.游家豪,「低塑性細料對粉質砂土動態性質之影響」,碩士論文,國立成功大學土木工程系研究所,臺南(2007)。
19.褚炳麟、張益銘、陳冠閔、徐松圻、張錦銘,「921地震霧峰、太平地區液化即下陷調查分析」,地工技術,第77期,第19-28頁(2000)
20.廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,碩士論文,國立成功大學土木工程系研究所,臺南(2005)。
21.Chaney, R. C., “Saturation effects on the cyclic strength of sands”, Earthquake Engineering and Soil Dynamics, ASCE, Vol, 1, pp. 342-358 (1978).
22.Chang, N.Y., Yeh, S.T. and Kaufman, L. P., “Liquefaction potential of clean and silty sands”, Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032 (1982).
23.Cubrinovski, M. and Ishihara, K., “Maximum and Minimum Void Ratio Characteristics of Sands”, Soils and Foundations, Vol. 42, No. 6, pp.65-78(2002).
24.Cubrinovski, M., Rees, S. and Bowman, E., “Effects of non-plastic fines on liquefaction resistance of sandy soils”, M. Garevski and A. Ansal (Ed.), Earthquake Engineering in Europe. Geotechnical, Geological, and Earthquake Engineering 17. pp. 125-144(2010).
25.Das, D. M., “Principles of Geotechnical Engineering”(1985).
26.Della, N., Arab, A. and Belkhatir, M., “Influence of Specimen -Reconstituting Method on the Undrained Response of Loose Granular Soil under Static Loading”, Acta Mechanica Sinica, Vol. 27, No. 5, pp. 796-802(2011).
27.Erten, D. and Maher, M. H., “Cyclic Undrain Behavior of Silty Sand”, Soil Dynamics and Earthquake Engineering, Vol. 14, pp. 115-123(1995).
28.Guo, T. and Prakash, S., “Liquefaction Silt-Clay Mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 8(1999).
29.Hazen, A., “Hydraulic Fill Dams”, ASCE, Vol. 83, pp. 1713-1745(1920).
30.Høeg, K., Dyvik, R. and Sandbaekken, G., “Strength of Undisturbed Versus Reconstituted Silt and Silty Sand Specimens”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp. 606-617 (2000).
31.Holtz, R. D., Kovacs, W. D. and Sheahan, T. C., “An Introduction to Geotechnical Engineering” (1981)
32.Ishibashi, I. M., Sherlif, M. A. and Cheng, W. L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,”Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48 (1982).
33.Ishihara, K., “Stability of Natural Deposits during Earthquakes”, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376(1985).
34.Ishihara, K., “Soil Behavior in Earthquake Geotechnics ” , Clarendon, Oxfor and New York(1996)
35.Ishihara, K., “Geotechnical Aspects of the 1995 Kobe Earthquake”, Proceedings 14th International Conference on Soil Mechanics and Foundation Engineering, Terzaghi Oration, Hamburg (1997).
36.Ishihara, K. and Yoshimi, M., “Evaluation of Settlement in Sand Deposits Following Shear Loading”, Soils and Foundations, Vol. 32, No. 1, pp.178-188(1992).
37.Ishihara, K., Araki, K. and Bradley, B., “Liquefaction in Toyoko Bay Area in the 2011 Great East Japan Earthquake”, International Conference on Earthquake Geotechnical Engineering from Case History to Practice, Aswan, Egypt(2012).
38.Kramer, S. L., “Geotechnical Earthquake Engineering”, Prentice Hall, New Jersey(1996).
39.Kuerbis, R., Nequssey, D. and Vaid, Y. P., “Effect of Gradation and Fines Content on the Undrained Response of Sand”, Geotechnical Special Publication, ASCE, No. 21, pp. 330-345 (1988).
40.Lee, K. L. and Albaisa, A., “Earthquake Induced Settlements in Saturated Soil”, Vibration Effects of Earthquake on Soil and Foundations, ASTM, STP 450, pp. 71-96 (1969).
41.Marcuson, W. F., “Definition of Term Related to Liquefaction”, Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.565-588(1978).
42.Monkul, M. M. and Yamamuro , J. A., “Influence of Silt Size and Content on Liquefaction Behavior of Sands”, Canadian Geotechnical Journal, Vol. 48, No. 6, pp. 931-942(2011).
43.Nagase, H. and Ishihara, K., “Liquefaction-Induced Compaction and Settlement of Sand During Earthquakes”, Soils and Foundations, Vol. 28, No. 1, pp. 65-76(1988).
44.Peacock, W. H. and Seed, H. B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions“, Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 94, SM3, pp. 689-708(1968).
45.Polito, C. P. and Martin, J. R., “Effects of Nonplastic Fines on the Liquefaction Resistance of Sands”, Journal of the Geotechnical Engineering, Vol. 127, No. 5, pp. 408-415(2001)
46.Seed, H. B., “Evaluation of soil liquefaction effects on level ground during earthquakes”, Liquefaction Problems in Geotechnical Engineering, pp.1-104 (1976).
47.Seed, H. B. and Lee, K. L., “Liquefaction of Saturated Sands During Cyclic Loading”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
48.Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Journal of Geotechnical Engineering, 4SCE, Vol.111, NO. 12, pp. 1425-1445(1985) .
49.Seed, R. B. and Harder, L. F., “SPT-Based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength”, in J. M. Duncan ed., Proceedings, H. Bolton Seed Memorial Symposium, University of California, Berkeley, California, Vol. 2, pp. 351-376(1990).
50.Tsukamoto, Y., Ishihara, K. and Sawada, S., “Settlement of silty sand deposits following liquefaction during earthquakes”, Soils and Foundations, Vol. 44, No. 5, pp. 135-148(2004).
51.Wong, R. T., Seed, H. B. and Chan, C. K., “Cyclic Loading Liquefaction of Gravelly Soils”, Journal of the Soil Mechanics and Foundation Enginnering Division, ASCE, Vol. 101, No. GT6, pp. 571-583 (1975).
52.Xenaki, V. C. and Athanasopoulos, G. A., “Liquefaction Resistance of Sand-Silt Mixtures:an Experimental Investigation of the Effect of Fines”, Soil Dynamics and Earthquake Engineering, Vol. 23, No. 3, pp. 183-194 (2003).
53.Yamamuro, J.A., AND Kelly, M., “Monotonic and Cyclic Liquefaction of very Loose Sands with High Silt Content,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 314-323 (2001).
54.Yoshimi, Y. and Ohoka, H., “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand”, Soils and Foundations, JSSMFE, Vol. 15, No. 3, pp. 27-40(1975).
55.Yoshimi, Y., Tokimatsu, K. and Ohara, J., “In Situ Liquefaction Resistance of Clean Sands over a Wide Density Range”, Geotechnique 44, No. 3, pp.479-494 (1994).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw